Middleton's Stormwater Management Program 1975-2020 and effects of Climate Change and Urbanization

PURPOSE

- Purpose of presentation is to show effectiveness of Middleton's stormwater management program over the period 1975-2020.
- Study shows how streamflow and water quality were affected by climate change and urbanization.

• Analysis provides areas where City should focus efforts to reduce flood peaks and decrease sediment and phosphorus loads.

Middleton Stormwater Management Plan

-Middleton Water Resource Management Commission (MWRC)was formed in 1974.

-Purpose was to protect and enhance the water resources of Middleton.

-In 1979 a Stormwater Ordinance was developed to prevent flood peaks from increasing due to urbanization.

-The ordinance was modified in subsequent years to reduce sediment and phosphorus loads into Lake Mendota and to protect groundwater recharge.

Middleton Stormwater Management Plan (cont'd)

- To provide streamflow information for decision making a streamflow monitoring program was established with the U.S. Geological Survey in 1975.
- On the mainstem, streamflow and sediment data has been collected since 1975 and phosphorus data since 1993.
- The South Fork and North Fork have gaging stations for the periods 1978-1981 and 2012-2020 with streamflow, sediment and phosphorus data collected.

Years

Years

Annual Peak Discharge for Pheasant Branch at Parmenter St for the period 1975-2020

COMPARISON OF PRECIPITATION WITH STREAMFLOW CHARACTERISTICS FROM 1975-1989 TO 2004-2020

Period	Average Annual	Average Annual	Average Annual
	Precipitation	Streamflow	Flood Peaks
	inches	cfs-days	cfs
1975-1989	31.3	1500	319
1990-2004	35.1	2070	449
2005-2020	40.8	3560	626
Increase			
1974-89 to 2005-2020	30.3%	137%	96%

Annual Streamflow Volume and Sediment Load for Pheasant Branch at Parmenter St

Years

Annual Phosphorus Load and Streamflow Volume for Pheasant Branch at

Parmenter St

YEARS

ESTIMATED SEDIMENT AND PHOSPHORUS LOADS TRAPPED IN CONFLUENCE POND 2012-2020

	Sediment Loads					Phosphorus Loads		
Year	Inflow	Outflow	Trapped	Percent	Inflow	Outflow	Trapped	Percent
	tons/yr	tons/yr	tons/yr	Trapped	lb./yr	lbs/yr	lbs/yr	Trapped
2012	99	37.6	61.3	62.0	2040	1096	946	46.3
2013	979	640	340	34.7	11723	10008	1715	14.6
2014	840	303	537	63.9	7799	6950	848	10.9
2015	734	157	577	78.6	5042	2814	2228	44.2
2016	1688	179	1509	89.4	8926	5682	3244	36.3
2017	660	381	279	42.3	10562	7735	2827	26.8
2018	1423	508	915	64.3	16350	12127	4224	25.8
2019	3406	1046	2360	69.3	25146	19622	5599	22.2
2020	2063	687	1376	66.7	14602	9572	5030	34.4
2012-								
2020	1474	488	987	63.6%	11354	8401	2962	29.1%

Average

2012-2020 PHOSPHORUS LOAD INTO CONFLUENCE POND

Changes in Precipitation and Annual Streamflow at Three Gaging Stations

		Average Ann	ual	
Period	Average Annual	Streamflow		
	Precipitation	North Fork	South Fork	Pheasant Br
		Pheasant Branch	Pheasant Branch	downstream Confluence
		(rural)	(urban)	Pond
	inches	cfs/mi²	cfs/mi²	cfs/mi²
1978-1981	32.8	24.4	19.5	17
2013-2020	44.1	64.5	143.0	49.5
Increase %	34.4%	164%	633%	191%

Changes in Precipitation and Flood Peaks at Three Gaging Stations

	Average Annual Precipitation	Average An	nual Flood Peaks	
Period		North Fork	South Fork	Pheasant Br
		Pheasant Branch	Pheasant Branch	downstream
		(rural)	(urban)	Confluence Pond
	inches	cfs/mi²	cfs/mi²	cfs/mi²
1978-1981	32.8	69	31	83
2013-2020	44.1	156	196	237
Increase %	34.4%	126%	532%	186%

Cumulative Annual Streamflow Pheasant Branch at Parmenter St 1975-2021

Years

Reasons for Increased Streamflow Volume

- The increase in annual precipitation due to climate change
- Urbanization increased streamflow due to the increased impervious area prevented infiltration to groundwater. This is a bigger factor for flood peaks since groundwater infiltration generally goes back into the stream as baseflow.
- The increase in impervious area removes the loss of water to evapotranspiration. This hasn't received much attention and is not addressed in Middleton's Stormwater Ordinance.

Average Annual Precipitation 1969-2008

Average Annual Runoff 1969-2008

Average Annual Water Budget f	or South Fork Pheasant Bran	ch 1978-1982	
	Runoff Values	Est Runoff	
	Prior to	Values with	
	Urbanization	Urbanization	
		with Ordinace *	
	inches	inches	
Average Annual Precipitation in inches (P) 32.5	32.5	
Groundwater Recharge in inches (GW)	8	8	
Evapotranspiration in inches (ET)	23	13.8	
Est Avg Annual Flow in inches (Q)			
Q=P-GW-ET	1.5	10.7	
Recorded Avg Annual Flow	1.3	1.3	
Increase in Avg Annual Flow		720%	

			Average Annual Flow Volume			
	Period	Average Annual	North Fork	South Fork	Pheasant Branch	
		Precipitation	Pheasant Branch	Pheasant Branch	at Parmenter Street	
			(rural)	(urban)		
		(inches)	(cfs-days/sq mi)	(cfs-days/sq mi)	(cfs-days/sq mi)	
	1978-1981	32.8	24.4	19.5	17	
	2013-2020	44.1	64.5	143	49.5	
	Increase %	34.4%	164%	633%	191%	
Table 3.	Comparison of aver	age annual precipitation	on with average annua	l flow volume at three	gaging stations for two	periods.

Possible Changes to Storm Water Ordinance to Reduce Increased Runoff Volume due ET Loss

- Require developer to provide solutions to reduce runoff volumes:
 -increase plants and trees in open spaces with high ET
- -use green infrastructure to increase ET
- -provide storage space around pond to accommodate increased runoff
- -provide outlet structure to accommodate increased runoff
- -require detailed rainfall runoff model that incorporates ET and GW to show how ET loss is compensated

Do nothing to the Ordinance and have city handle problems as they develops like Tiedeman and Stricker Ponds

SUMMARY

- Middleton's stormwater management program is effective in reducing sediment and phosphorus loads.
- Since 2002 the annual sediment load has decreased 56% and the annual phosphorus load decreased 48 %.
- The Confluence Pond has trapped 64 % of the sediment load, 16,000 tons and 29% of the phosphorus load 53,000 pounds.
- Climate change and urbanization have caused the annual flow to increase 136% and the annual flood peaks to increase 96%.
- A comparison on the urbanized South Fork to the rural North Fork showed annual flood peaks increase 632% for the South Fork compared to 182% for the North Fork.
- The North Fork contributes 15,700 lbs./yr. of phosphorus.
- The streamflow data collection program was critical for evaluating the effectiveness of the stormwater management program.

FUTURE CONSIDERATIONS

- To reduce flood peaks or minimize the increase due to climate change and urbanization more stringent controls will be required on the North Fork.
- To reduce flood peaks efforts should be made by Middleton with Madison to retrofit some of the existing development on the South Fork with flood retention features.
- To reduce phosphorus loads, future efforts should be concentrated on the North Fork since it has the largest load.
- If climate change continues Middleton should be prepared for continued repairs to Pheasant Branch.
- Add recommendation to Stormwater Ordinance to reduce flood volumes as a result of evapotranspiration loss.

http://digital.stormh20.com/november-2021

https://www.cityofmiddleton.us/278/Storm-Water-Study-Reports

wagebert@wisc.edu

