Yahara Pride Farms 2017 Phosphorus Reduction Report Yahara Pride Board of Directors May 27, 2018 # **Executive Summary** ### What the data represents This report provides the data and summary information for the 35 farms cooperating in the 2017 Yahara Pride Farms (YPF) cost share program. In 2017 there were 4 new farms in the program. There were also farms that implemented practices but did not provide a SNAP+ file for evaluation or payment. The information provided is based on the difference in predicted phosphorus loss from the adoption of a practice such as strip tillage, low disturbance manure injection, cover crops, headland stacking of manure, or combination of two. The 2017 data is based off the "SNAP+" plans provided to YPF by the farmers and/or their crop advisors. All the data presented in this report are derived from the individual farms nutrient management plan, which takes into account tillage, crop rotations, nutrient applications from both manure and fertilizer, and crop yields. This is the best representation of what is actually happening on the farms that participate in the Yahara Pride Cost Share program. Each farm and field has unique characteristics that influence yields, the tillage system and the risks for sediment and nutrient loss. That is why we see such large variation in losses within this data set. ### Summary of phosphorus reductions Table 1 shows a comparison of the number of farms, acres and phosphorus reductions achieved through the **cover crop program** from 2013 to 2017. | Year | 2013 | 2014 | 2015 | 2016 | 2017 | |----------------------------------|-------|-------|-------|-------|-------| | Farms | 20 | 37 | 35 | 37 | 33 | | Fields | 80 | 53 | 160 | 290 | 212 | | Acres | 2,436 | 4,732 | 4,908 | 5,851 | 4,483 | | Average (lbs/acre) | 0.7 | 0.8 | 1.8 | 1.5 | 1.8 | | Total P reduction
(In pounds) | 1,730 | 3,691 | 6,572 | 7,130 | 7,300 | Table 1 Number of farms, acres and phosphorus reductions through the cover crop program In 2017 there was a reduction in the number of farms cooperating in the cover crop program. This could be due to weather conditions, timing of planting or the general farm economy. However, the acres reported in 2016 in table 1 contained both the acres planted with just a cover crop and the acres with low disturbance deep tillage and a cover crop. Therefore, a more accurate comparison would be to add the two together, which yields: 2016 5,851 acres with cover crops 7,130 pounds of P reduced • 2017 5,439 acres with cover crops 9,281 pounds of P reduced Table 2 shows a comparison of the low disturbance deep tillage plus cover crop program (LDDT), which was first offered to farmers in the watershed in 2016. In the 2016 YPF Phosphorus report the acres implemented using LDDT | Year | 2016 | 2017 | |--------------------|-------|-------| | Farms | 8 | 11 | | Fields | , | 52 | | Acres | 730 | 956 | | Average (lbs/acre) | 1.48 | 2.2 | | Total P reduction | 1,080 | 1,981 | | (In pounds) | | | Table 2 Number of farms, acres and phosphorus reductions through the LDDT + cover crop program Table 3 shows a comparison of the number of farms, acres and phosphorus reductions achieved through the **low disturbance manure injection program** from 2013 to 2017. | Low Disturbance Manure Injection Program | 2013 | 2014 | 2015 | 2016 | 2017 | |--|------|------|-------|-------|-------| | Number of farms | 11 | 14 | 4 | 7 | 15 | | Number of fields | 20 | 20 | 32 | 76 | 223 | | Tillable acres in program | 361 | 841 | 566 | 1,203 | 3,885 | | Average phosphorus reduction (lbs./acre) | 1.0 | 0.6 | 1.9 | 0.9 | 1.4 | | Total phosphorus reduction (in pounds) | 357 | 530 | 1,081 | 1,106 | 6,039 | Table 3 Number of farms, acres and phosphorus reductions through the LDMI program The LDMI program grew at a tremendous rate this year compared to previous years. Much of this is due to the cost share program for the purchase of LDMI equipment. It is clear that in the future there will continue to be an increase in LDMI acres. The table 4 shows a comparison of the number of farms, acres and phosphorus reductions achieved through **strip tillage program** from 2013 to 2017. | Strip Tillage Program | 2013 | 2014 | 2015 | 2016 | 2017 | |--|------|------|-------|------|-------| | Number of farms | 3 | 3 | 3 | 3 | 4 | | Number of fields | 11 | 15 | 20 | 21 | 35 | | Tillable acres in program | 156 | 253 | 1,489 | 917 | 1,829 | | Average phosphorus reduction (lbs./acre) | 1.4 | 0.9 | 0.8 | 0.9 | 0.8 | | Total phosphorus reduction (in pounds) | 225 | 220 | 1,221 | 703 | 1,458 | Table 4 Number of farms, acres and phosphorus reductions through strip tillage program Strip tillage grew to the largest number of acres since the beginning of the cost share program. It appears that the average phosphorus reduction is very stable (around 0.85 pounds per acre). This year strip tillage had the largest reduction in the history of the program. Yahara Pride Farms also provided an incentive payment for farmers who did not apply manure during the critical runoff period (on frozen or snow cover ground). They also provided this payment in 2016 and had one cooperator who did not apply manure on 50.4 acres. This yielded a phosphorus reduction of 2.1 pound per acre and had the greatest impact on soluble phosphorus loss. In 2017, headland stacking had 9 farms participating in the program. There was a total of 301 acres of land where manure was not applied during the critical runoff period. Some of the cooperating farms were farms that had a WPDES permit so they could not apply manure during this period. In 2017 the average reduction of phosphorus was 2.1 pounds per acre (same as in 2016) and the total reduction in the risk of phosphorus loss was 665 pounds. In 2017 YPF provided a bonus payment for farms that either combined two practices on a field (one practice was always cover crops while the second practice was either strip tillage or LDMI). In 2017, the average predicted phosphorus reduction for combining two practices was **0.9 pounds per acre**. This year's data set contained 66 fields totaling 1,704 acres. This reduction in phosphorus is over and above the individual practice data set. # **2017 Summary of Predicted Phosphorus Reduction** | Pra | <u>actice</u> | Average P Reduction | Total Predicted P Reduction | |-----|---------------------------|---------------------|------------------------------------| | > | Cover Crops | 1.8 | 7,300 lbs | | > | LDDT + cover crop | 2.2 | 1,981 lbs | | > | LDMI | 0.9 | 6,039 lbs | | > | Strip Tillage | 0.8 | 1,458 lbs | | > | Headland Stacking Manu | re 2.1 | 665 lbs | | > | Combined Practices | 0.9 | <u>1,416 lbs</u> | | | | T | Total 18,859 lbs | ### Introduction First and foremost – Thank you to all the farmers in the Yahara Pride Watershed program for working with Yahara Pride Farms and Yahara WINS to implement practices that reduce the potential for phosphorus loss to the streams and rivers that contribute water to the Yahara Lakes. The farmers in this area continue to be supportive of Yahara Pride Farms and continue to seek alternative farming systems and conservation practices that reduce phosphorus and sediment loss. This report shows how hard each and every one of you works to keep soil and nutrients on your fields and out of our water. Farmers are the heart and soul of the Yahara Pride Farms program and we thank you! Yahara Pride Farms and the farmers in the Yahara Watershed are also indebted to "The Yahara Watershed Improvement Network (Yahara WINs), led by MMSD", which began in 2012 as a four-year pilot project to reduce phosphorus loads and meet more stringent water quality standards established by the Wisconsin Department of Natural Resources (WDNR). This groundbreaking program employs watershed adaptive management, a strategy in which all sources of phosphorus pollution in an area work together to meet water quality goals. This strategy is more effective and less expensive than the sources working separately on individual solutions. Partners in Yahara WINs include cities, villages, towns, wastewater treatment plants, agricultural producers, environmental groups and others. Thanks also to the businesses and organizations who provide support (both financial and in-kind), to Yahara Pride Farms. It takes people and money to offer this cost share, certification and outreach and education events, and we wouldn't be able to do it without your support. This farmer-led watershed approach has become a model for others around the state because we have been able to offer programs and events based on your support. Thank you for being an important of the Yahara Pride Farms program. Finally, thanks to the members of the Yahara Pride Farms board of directors and all the staff who have worked with us over the past 4-5 years. Your guidance and support have shaped this program and we cannot thank you enough for the time you committed to this organization. Yahara Pride Farms Inc. Board of Directors Jeff Endres - Chair Bob Uphoff, Vice Chair Chuck Ripp - Secretary Scott Mayer – Treasurer Will Hensen Art Meinholtz Dave Fahey Dave Taylor Mike Gerner Rob Klink # **Programs offered in 2017** During 2017 the Yahara Pride Farms (YPF) board of directors continued operating and implementing a number of agricultural conservation programs designed to reduce the loss of phosphorus within the Yahara Watershed. There were five major incentive programs offered within the watershed in 2017 including: - 1. Cover Crop Assistance, - 2. Low Disturbance Deep Tillage and Cover Crop, - 3. Low Disturbance Manure Injection, - 4. Strip tillage, and - 5. Headland Stacking of Manure / Composting In addition to these five programs, YPF offered bonus payments to farms that implemented a combination of practices on the same field (two or more practices). Each of these programs offers unique benefits both from a
phosphorus reduction standpoint as well as educational and confidence/trust building within the watershed. This report provides an update on the number of acres, fields and farms involved in each of these programs. The Wisconsin Phosphorus Index (P Index) is a model that estimates the pounds of phosphorus prevented from reaching the nearest waterbody. The nearest waterbody would in most cases be streams and rivers. These estimates of the pounds of phosphorus prevented from reaching a waterbody can then be used (with the appropriate delivery factors) to estimate the pounds of phosphorus prevented from entering the Madison chain of Lakes. ### 1. Cover Crop Assistance Program: Cover crops are grasses, legumes, small grains or other crops grown between regular grain crop production periods for the purpose of protecting and improving the soil. The most common cover crops are fall-seeded cereals, such as rye, barley or wheat, and fall-seeded annual ryegrass. Late summer-seeded spring oats or spring barley is sometimes used if winterkill is preferred to avoid spring termination by tillage or herbicide. One of the two major reasons for growing winter cover crops is to reduce soil erosion. In the Yahara Watershed a significant amount of the tillable acres has sufficient slope to be at risk for erosion if not adequately protected. Eroding soil particles not only fill in wetlands and streams, but they also carry particulate bound phosphorus to surface water. Based on the data collected by the Yahara Pride Farms over the years of this cost share program, the use of cover crops is most effective when targeted to specific fields and farming systems. Cover crops have a high potential to reduce phosphorus loss on fields being harvested as corn silage with manure incorporated in the late summer or fall. Research has shown that fields with winter cover incorporated in the spring have 55 percent less water runoff and 50 percent less soil loss annually than do fields with no winter cover. More recent studies show soil losses from corn or soybeans no- tilled into a vigorous growth of rye or wheat to be 90-95 percent less than soil losses from corn and soybeans conventionally tilled. The Yahara Pride Farms began working with cover crops as a demonstration program in 2012. The program got a fair amount of publicity and recognition and other farmers within the watershed became interested in cooperating because of the ease of getting into the program. While not all the fields in the watershed planted into cover crops can be attributed to the Yahara Pride Farms program, it is clear that cover crops are becoming a recognized and accepted practice in the watershed. There are still a number of important considerations that need to be evaluated and addressed in regards to cover crops in this region of the state. Some of these include the cover crop species planted, the timing of planting, targeting fields that have the greatest potential for nutrient and sediment loss and targeting farming systems that have the greatest potential for nutrient and sediment loss. In 2017 YPF worked with local crop consultants to get the information required to calculate the potential environmental benefits of all three cost shared practices. The information on the following pages for the cover crop program shows that in 2017 there were 212 fields with crop rotations and farming systems in the SNAP format. This represented 100% of the total acres planted with cover crops through the cost share program, though most of these acres were not cost shared. The wide range of farms and farming systems reflected in the data improves our understanding of the potential for cover crops to reduce phosphorus loss. Based on the field data collected during the 2017 seasons, the cover crop incentive program reduced the risk of phosphorus loss by 7,300 pounds (compared to 7,130 pounds in 2016). The average reduction in phosphorus loss was 1.8 pounds per acre in 2017 compared to 1.5 lbs/acre in 2016. Care should be used when comparing year-to-year changes in the predictions of phosphorus loss because of changes to the SNAP+ program. This year's phosphorus reduction = 7,300 lbs Cost share program sponsored at \$40 / acre for a maximum of 50 acres Total acres planted using a cover crop system = 4,483 acres Total estimated acres cost shared = 1,365 acres Acres planted without cost share in watershed = 3,118 acres 30.4% of the acres planted to cover crops on YPF's land were cost shared The table in appendix 1 provides the information from each field in the cover crop program. Looking at the data based on phosphorus reduction for each reach of stream is in table 14 (below). | Stream Reach | Acres | Percentage of Acres | |--------------|-------|---------------------| | 62 | 225 | 5.0% | | 63 | 363.4 | 8.1% | | 64 | 2,872 | 64.1% | | 65 | 9 | 0.2% | | 66 | 36 | 0.8% | | 69 | 978 | 21.8% | Table 5 Acres in the cover crop program by stream reach # 2. Low Disturbance Deep Tillage and Cover Crop: The low disturbance deep tillage and cover crop program was offered in 2016 because of the wet fall and the very high potential for soil compaction done on fields harvested during high soil moisture conditions. The program offered cost share assistance to farmers willing to implement deep tillage practices that were also low disturbance. The goal was to reduce the potential for aggressive deep tillage conducted within the watershed, which would increase the potential for soil erosion. The cost share program offered a payment of \$55 per acre with a 50 acre maximum for a total possible payment of \$2,750 per operation. Based on the information contained in the SNAP+ program it was impossible to determine the impact of low disturbance deep tillage verses other methods of deep tillage. This tillage system is not contained in the SNAP+ so farmers and crop consultants had to identify a tillage system that produces similar results. In 2017 crop consultants identified the fields where LDDT with a cover crop was conducted. The low disturbance deep tillage and cover crop cost share program had <u>52 fields identified</u> with a total of <u>956 acres within the watershed</u>. Total acres planted with the LDDT plus cover crop system = 956 acres Total acres cost shared = 448 acres Acres planted without cost share in watershed = 508 acres The fields identified using LDDT plus a cover crop reduced the risk of phosphorus loss by 1,981 lbs. Average reduction in P loss = 2.2 pounds per acre Appendix 2 contains the individual field data for the LDDT plus cover crop program. Of the ten farms participating in the LDDT + cover crop program nine were located in stream reach 64, while the other was in 62. The acres are: Stream reach 64 884.3 acresStream reach 63 71.5 acres ### 3. Low Disturbance Manure Injection: The northern portion of the Yahara Watershed is an area with high concentrations of livestock and therefore a great deal of manure. Manure is either incorporated into the soil using a number of different tillage implements (chisel plow, disk, or field cultivator) or it is applied to the soil's surface and not incorporated. Surface applications of manure have been shown to increase nitrogen and phosphorus runoff to rivers and streams, while injection/incorporation places manure below the surface where it doesn't interact with runoff water during storms. However, on steep slopes injection/incorporation of manure can make the soil more susceptible to erosion. For many livestock operations in the Yahara, manure incorporation is a standard practice. Traditional incorporation methods move a great deal of soil and increase the potential for soil erosion. Field evaluations conducted by the Yahara Pride Certification Program during the spring of 2013 and 2014 identified reducing soil erosion as a high priority. Since much of the tillage was conducted to incorporate manure, a system of incorporating manure with minimal soil disturbance needed to be implemented in the watershed. Minimum disturbance equipment also works well with no-till farming systems and allows farmers to experiment with new methods of preserving nitrogen, phosphorus and potassium to save on fertilizer costs. In addition to the economic benefits, improved manure utilization benefits the environment by ensuring efficient nutrient use and improving soil and water quality. Yahara Pride Farms was one of the first groups in Wisconsin to experiment with vertical manure injection (VMI). VMI is a farming system that incorporates manure into the soil with minimal soil disturbance. Since YPF began using VMI there have been a number of companies that have made equipment to incorporate manure with low soil disturbance. These systems often use a single large fluted coulter to cut crop residue and open a channel in the soil surface for manure placement. Significantly less soil disturbance occurs with this process than with either chisel or chisel/disk manure incorporation systems. Since 2013, YPF has been encouraging farmers to try low disturbance manure injection (LDMI) systems. Dane County now offers cost share to farmers and custom manure applicators to upgrade their manure application equipment to LDMI. In 2017 the manure application program includes any manure application equipment defined as low disturbance (Low Disturbance Manure Injection – LDMI). Participants in the cost share program were either farmers who had purchased LDMI equipment, or hired a custom operator who had LDMI equipment. In 2017, YPF had fourteen farms (up from 4 in 2015 and 7 in 2016) participate in the LDMI program. The cost share program was modified to provide \$20 per acre with a 100-acre maximum payment (\$2,000 maximum). The fourteen farms used the equipment on 223 separate fields (up from 32), which totaled 3,885 acres (566 acres in 2015 and 1,203 fields in 2016). There was additional manure applied using this equipment, but some of that land was out of the Yahara Watershed. The
data contained in appendix 3 are from the fields within the Yahara Watershed. The estimates for the reductions in phosphorus loss were conducted using crop rotation, tillage practices and manure application data provided by farmers and their crop consultants in the watershed. The average reduction in the risk of phosphorus loss for the **LDMI program was 1.4 pounds of P per acre.** Based on the 2017 data, the LDMI cost share program reduced phosphorus loss by 6,039 lbs. Total acres with manure applied with the LDMI system = 3,885 acres Total acres cost shared = 1,378 acres Acres planted without cost share in watershed = 2,507 acres Looking at the data based on phosphorus reduction for each reach of stream is in table 9 (below). | Stream Reach | Acres | Percentage of Acres | |--------------|---------|---------------------| | 63 | 571.0 | 14.7% | | 64 | 3,110.2 | 80.1% | | 65 | 12.6 | 0.3% | | 66 | 191.2 | 4.9% | Table 6 Acres implementing LDMI by stream reach ### 4. Strip Tillage: Strip-tillage is a conservation system that offers an alternative to no-till, full-till and minimum tillage. It combines the soil drying and warming benefits of conventional tillage with the soil-protecting advantages of no-till by disturbing only the portion of the soil that is to contain the seed row (similar to zone tillage). Each row that has been strip-tilled is usually about eight to ten inches wide. The system still allows for some soil water contact that could cause erosion, however, the amount of potential erosion on a strip-tilled field would be lower than compared to the amount of erosion on an intensively tilled field. Compared to intensive tillage, strip tillage saves considerable time, fuel and money. Another benefit is that strip-tillage conserves more soil moisture compared to intensive tillage systems. However, compared to no-till, strip-tillage may in some cases reduce soil moisture and increase the potential for soil loss. Strip-tillage is performed with a special piece of equipment and the YPF's strip till program originally assisted with the rental of a strip till machine to determine if this farming system fit into a farms overall farming system and management. In the first two years of the Yahara cost share program a unique partnership was formed between the Yahara Pride Farms Inc. and Kalscheur Implement. Since 2015, Kalscheur Implement was no longer able to provide a strip tillage machine, so the YPF's board dropped the rental of a machine and approved a payment of \$15/acre for up to 50 acres for farmers wanting to experiment with strip tillage (maximum payment of \$750 per farm). The data contained in appendix 4 shows the soil types, slope, soil test phosphorus and the changes in the estimated annual phosphorus index from all fields that were tilled using a strip till machine. There were four farms that cooperated in the strip tillage program and these operations were spread out around a wide area of the Yahara watershed. Strip tillage was conducted on 34 different fields with a large variation of soil types, soil test and slopes. This year the number of acres planted using a strip tillage system was about 1,829 compared to last years total of 917. Running the SNAP calculations for each field is important because as demonstrated in the table, assuming that phosphorus reductions directly correspond to slope is not an accurate assumption. Based on the information gathered over the four years of this project, the factors that influence phosphorus loss (or reductions in phosphorus loss) include slope, tillage prior and after strip tillage, soil test levels, manure management program and the crop rotation. All of these factors play a large role in predicted phosphorus loss. The 2017 strip tillage program was conducted on 1,829 acres in the Yahara Watershed. However, the vast majority of these acres were not cost shared by the Yahara Pride Farms program. > Total acres stripped tilled 1,829 YPF cost share acres195.0 Acres of strip tillage done without financial assistance = 1,634acres Overall the average reduction in phosphorus loss was 0.8 pounds. For the 1,829 acres in the program the risk of phosphorus loss was <u>reduced 1,458 pounds</u> by adopting strip tillage. | Stream Reach | Acres | Percentage of Acres | |--------------|---------|---------------------| | 64 | 480.5 | 26.3% | | 69 | 1,348.0 | 73.7% | Table 7 Acres in the Yahara Watershed adopting strip tillage by stream reach # 5. **Headland Stacking Manure** Based on data collected at the Discovery Farms and Pioneer Farms, winter runoff events that occur as a combination of increased temperatures and rainfall, along with frozen soils and deep snow cover, produces a high potential for surface runoff from fields. Livestock producers who make manure applications to cropland during this high-risk period need to understand that spreading manure during snowmelt does have an extremely high risk of runoff. Studies from farms cooperating in the Discovery Farm Program indicate that manure applied to snow covered and/or frozen soils during conditions of snowmelt or rain on frozen soils can contribute the majority of the annual nutrient losses. One inappropriately timed manure application can generate large losses of phosphorus to surface waters. Yahara Pride Farms decided to provide an incentive to farmers who sometimes have to clean out lots with solid manure during this critical runoff period. The goals of this program were to reduce the risk of manure run off by: - Offering an incentive to farmers for stacking, reloading and spreading manure during a low risk runoff period. - The incentive payment is offered to help offset the cost of double handling manure. Calculating the predicted reductions in phosphorus loss from headland stacking during critical runoff periods can be accomplished using the SNAP+ program by comparing the risk of a manure application in the winter (surface applied) and in the spring (incorporated). The predicted reductions in phosphorus loss are shown in appendix 5. There were 9 farms that cooperated in the headland-stacking program in 2017. These farms stacked about 3,007 tons of solid dairy manure on sites approved for stacking. If the manure had been applied to cropland during the critical runoff period, the application would have covered about 301 acres of cropland. As shown in the table in appendix 5, staking manure during the critical runoff period reduced the loss of phosphorus by 2.1 pounds per acre. Headland stacking showed a greater reduction in the risk of phosphorus loss than any other single practice. It is also important to note that headland stacking of manure during the critical runoff period is the only practices where soluble phosphorus losses are the dominant form of phosphorus reduction. Manure application rates were the same on each field, the only variable was whether manure was spread during the winter on frozen and/or snow covered ground or during the spring and incorporated within 72 hours. These operations stacking just 3,007 tons of manure reduced the predicted risk of phosphorus loss to nearby surface water by 665 pounds. Practices that reduce losses of soluble phosphorus are of particular importance because once phosphorus is in runoff water there is little that can be done to remove it prior to reaching nearby surface water. Most conservation practices are designed to capture and slow water running off of fields so that particulate soil particles fall out of the runoff and remain in the buffers settling basins and wetlands. However, soluble phosphorus is not tied to particles and therefore flows with the water. Keeping soluble phosphorus out of runoff is a critical factor in reducing the overall phosphorus loads to the Madison chain of lakes. Of the nine farms participating in the headland stacking manure program, the breakdown of the acres without manure application based on stream reach is: Stream reach 64 372.0 acresStream reach 63 264.1 acres ### 6. Combined Practices The incredible cooperation of the local crop advisors and farmers provided YPF with an adequate data set so that we could evaluate "How does stacking different best management practices impact the potential for phosphorus loss"? This question was evaluated on 66 fields in 2017 and the data is contained in appendix 6. To determine the impact of applying more than one best management practices, we first ran the SNAP calculation with all the practices in place. Then one practice was removed from the field and the numbers were entered into the table for that practice. Then the practice that was removed was added back to the field and the second practice was removed. Those numbers were then entered into the spreadsheet for that practice. Finally both best management practices were removed from the field and the impact on the potential phosphorus loss was recorded. The data contained in the tables in appendix 6 compare fields with and without both practices. Most of the fields have two lines of data because one of the practices impacted the current year, while the other practice impacted the following year. Fields with one line had practices that impacted the same crop year. The phosphorus reductions for these fields appear in the individual practice sections of the report (LDMI, strip tillage and cover crops) so the reductions in predicted phosphorus loss for each single practice are not part of the data in appendix 6. This table shows only the impact of adopting two practices above and beyond the individual practices. However, for the purposes of the discussion the three cost shared practices (cover crops, low disturbance manure injection and strip tillage) were evaluated on fields that had multiple practices applied. The 2017 data set did not contain any fields that had all three practices and in all cases one of the practices was cover crops in combination of either LDMI or strip tillage. The 66 fields totaled 1,704 tillable acres. The average
phosphorus reduction for these fields was 4.3 lbs per acre, however that includes the reductions already in the individual practice data. When you take off the reductions from the other practice, combining practices results in an additional reduction of 0.9 pounds per acre. 1,704 acres were managed with a combination of practices adopted The average reduction in the <u>risk of phosphorus loss was 0.9 lbs greater than both practices</u> Combining practices resulted in an additional <u>1,416 pounds of phosphorus reduced</u> YPF needs to continue promoting the use of more than one conservation practice on a field in order to have adequate samples numbers to clearly identify the impact of two or more practices, ### **Conclusion:** The 2017 Yahara Pride Cost Share Program has engaged a large number of farmers in one or more of the five cost share programs. This report provides information on the predicted reductions in phosphorus loss by farmers adopting one or more of these practices. The report provides both a total for the entire watershed and the reductions for each of the six stream reaches that Yahara Pride Farms is working with farmers on adoption of conservation systems. This report did not evaluate multiple year data but a closer look at the impact of farms continuing a conservation practice is desirable. Future analysis should attempt to do a better job of looking at multiple years of adoption to understand the impacts of multiple years on a field. The headland-stacking program is the only program that has a dramatic potential reduction in soluble phosphorus loss. Additional work should be done to accurately reflect the cost that farmers bare in adopting these conservation systems. The cost of seed, planting, killing and impact of the cover crop on yield have not been examined. The cost of handling manure twice and hauling to an approved stacking site and then to the field, also need to be considered. A report evaluating the cost to farmers for adoption should be done to accurately reflect the total cost of these programs. Protecting water quality is important to everyone, and everyone needs to be part of the solution. | | | | : | 2017 Phosph | orus Report | - Cover Cr | ops | | | | | | | | | | | | | | |-------|-------------------|----------------|--------------|--------------------|---------------------|--------------|--------------|------------|---------------|---------------------|--------------|--------------|------------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | With | out Cover | Crop | | | Wi | th Cover C | rop | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Annual P
change per
acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 1.0 | Plano | PnC2 | 9% | 31 | 1.3 | 2 | 1 | 1.0 | 0.1 | 0.9 | 1 | 0 | 0.1 | 0.1 | 0.9 | 0.9 | 5 | PIC2 | PIC2 | 64 | | 1.9 | Plano | PnC2 | 9% | 44 | 3.9 | 4 | 3 | 2.8 | 0.3 | 3.8 | 4 | 3 | 2.3 | 0.3 | 0.5 | 1.0 | 5 | PnC2 | PnC2 | 64 | | 2.2 | Troxel | TrB | 9% | 73 | 2.2 | 4 | 5 | 4.7 | 0.4 | 2.2 | 4 | 5 | 4.3 | 0.4 | 0.4 | 0.9 | 5 | RnC2 | TrB | 63 | | 2.3 | Radford | RaA | 50% | 348 | 0.5 | 4 | 4 | 1.4 | 2.7 | 0.5 | 4 | 4 | 1.0 | 2.6 | 0.5 | 1.2 | 4 | EgA | RaA | 64 | | 2.5 | Griswold | GwB | 4% | 22 | 0.5 | 2 | 2 | 0.7 | 1.0 | 0.4 | 1 | 1 | 0.5 | 0.3 | 0.9 | 2.3 | 5 | GwB | GwB | 64 | | 2.7 | McHenry | MdD2 | 16% | 114 | 11.0 | 4 | 4 | 2.8 | 0.8 | 10.7 | 4 | 3 | 2.4 | 0.9 | 0.3 | 0.8 | 5 | MdD2 | MdD2 | 64 | | 3.0 | McHenry | MdC2 | 9% | 42 | 0.5 | 0 | 0 | 0.3 | 0.1 | 0.2 | 0 | 0 | 0.1 | 0.1 | 0.2 | 0.6 | 5 | MdC2 | MdC2 | 62 | | 3.1 | McHenry | MdC2 | 9% | 15 | 1.7 | 1 | 1 | 0.7 | 0.1 | 1.2 | 1 | 0 | 0.2 | 0.1 | 0.5 | 1.6 | 5 | MdC2 | MdC2 | 62 | | 3.2 | McHenry | MdC2 | 9% | 47 | 0.5 | 0 | 0 | 0.2 | 0.1 | 0.4 | 0 | 0 | 0.2 | 0.1 | 0.0 | 0.0 | 5 | MdC2 | MdC2 | 62 | | 3.2 | Kidder | KdD2 | 16% | 42 | 0.8 | 1 | 1 | 0.5 | 0.1 | 0.8 | 1 | 1 | 0.5 | 0.1 | 0.0 | 0.0 | 5 | KdD2 | DnC2 | 64 | | 3.3 | McHenry | MdC2 | 9% | 49 | 0.7 | 1 | 1 | 0.4 | 0.1 | 0.4 | 1 | 0 | 0.2 | 0.1 | 0.2 | 0.7 | 5 | MdC2 | MdC2 | 62 | | 3.4 | McHenry | MdD2 | 13% | 107 | 4.1 | 6 | 12 | 11.0 | 0.7 | 3.5 | 5 | 5 | 4.8 | 0.6 | 6.3 | 21.4 | 5 | MdD2 | MDD2 | 62 | | 3.5 | DunBarton | 1180D2 | 16% | 67 | 2.0 | 2 | 3 | 2.6 | 0.5 | 0.9 | 1 | 3 | 2.0 | 0.6 | 0.5 | 1.8 | 1 | 1180D2 | 1180D2 | 64 | | 3.8 | Ringwood | RnC2 | 9% | 19 | 0.9 | 1 | 4 | 3.4 | 0.3 | 0.1 | 0 | 0 | 0.2 | 0.1 | 3.4 | 12.9 | 5 | RnC2 | RnC2 | 64 | | 3.9 | McHenry | MdC2 | 9% | 38 | 1.6 | 1 | 2 | 1.8 | 0.5 | 1.6 | 1 | 2 | 1.5 | 0.5 | 0.3 | 1.2 | 5 | MdC2 | MdC2 | 64 | | 4.0 | St Charles | ScB | 3% | 102 | 0.1 | 0.4 | 0.5 | 0.2 | 0.3 | 0.2 | 0.6 | 0.7 | 0.3 | 0.4 | -0.2 | -0.8 | 5 | ScB | ScB | 66 | | 4.2 | Kidder | KdD2 | 16% | 53 | 1.5 | 1 | 1 | 0.8 | 0.2 | 1.0 | 1 | 0 | 0.3 | 0.2 | 0.5 | 2.1 | 5 | KdD2 | MdC2 | 63 | | 4.2 | Military | MhD2 | 16% | 46 | 1.8 | 2 | 3 | 2.4 | 0.3 | 2.0 | 2 | 2 | 2.1 | 0.2 | 0.4 | 1.7 | 3 | MhD2 | MhD2 | 64 | | 4.2 | Griswold | GwD2 | 16% | 21 | 2.9 | 3 | 2 | 1.6 | 0.2 | 0.6 | 1 | 0 | 0.2 | 0.2 | 1.4 | 5.9 | 4 | GwD2 | PnC2 | 64 | | 4.6 | St Charles | ScC2 | 9% | 75 | 0.2 | 1 | 1 | 0.3 | 0.4 | 0.1 | 0 | 0 | 0.1 | 0.3 | 0.3 | 1.4 | 5 | ScC2 | EgA | 62 | | 4.8 | Batavia | BbB | 4% | 156 | 4.5 | 6 | 7 | 6.0 | 1.3 | 4.0 | 5 | 4 | 2.7 | 0.9 | 3.7 | 17.8 | 4 | BbB | BbB | 64 | | 5.0 | McHenry | MdC2
MdD2 | 9%
16% | 63 | 3.3 | 6
2 | 7 | 6.3
2.3 | 0.6 | 2.6 | 5
2 | 3 | 3.5
2.7 | 0.5 | 2.9
-0.4 | 14.5
-2.1 | 5 | MdC2
MdD2 | DnB
MdD2 | 62
64 | | 5.4 | McHenry | DrD2 | | 32 | 2.4 | 3 | 3 | | 0.2 | 2.4 | 3 | | 3.0 | | 0.1 | 0.5 | 3 | DrD2 | DrD2 | 64 | | 5.6 | Dresden
Kidder | KdD2 | 16% | 57 | 1.8 | 2 | 4 | 3.1 | 0.2 | 1.0 | 1 | 3 | 1.1 | 0.2 | 2.5 | 14.0 | 5 | KdD2 | MdC2 | 62 | | 5.6 | Dodge | DnC2 | 9% | 65 | 0.7 | 2 | 2 | 1.8 | 0.4 | 0.6 | 2 | 2 | 1.0 | 0.3 | 0.7 | 3.9 | 5 | DnC2 | DnB | 64 | | 5.9 | Batavia | BbB | 2% | 161 | 2.6 | 7 | 9 | 7.8 | 1.2 | 2.4 | 6 | 8 | 6.5 | 1.0 | 1.5 | 8.9 | 4 | BbB | BbB | 63 | | 6.0 | Griswold | GwC | 9% | 36 | 1.8 | 3 | 7 | 5.7 | 1.3 | 1.6 | 3 | 6 | 4.8 | 1.2 | 1.0 | 6.0 | 5 | GwC | GwC | 62 | | 6.0 | Plano | PnB | 4% | 42 | 1.6 | 4 | 9 | 7.1 | 2.0 | 1.3 | 4 | 5 | 3.6 | 1.7 | 3.8 | 22.8 | 5 | PnB | PnB | 64 | | 6.0 | Batavia | BbB | 9% | 49 | 1.0 | 1 | 1 | 0.9 | 0.3 | 0.4 | 1 | 0 | 0.3 | 0.2 | 0.7 | 4.2 | 3 | DsC2 | BbB | 64 | | 6.1 | Troxel | TrB | 2% | 90 | 1.6 | 2 | 3 | 2.3 | 0.3 | 1.3 | 1 | 1 | 1.0 | 0.2 | 1.4 | 8.5 | 5 | TrB | TrB | 63 | | 6.2 | Griswold | GrC2 | 8% | 34 | 0.9 | 1 | 3 | 2.8 | 0.5 | 0.7 | 1 | 2 | 1.9 | 0.5 | 0.9 | 5.6 | 4 | GrC2 | RdC2 | 64 | | 6.7 | Griswold | GwC | 8% | 112 | 1.6 | 2 | 2 | 1.6 | 0.7 | 1.6 | 2 | 2 | 1.7 | 0.6 | 0.0 | 0.0 | 5 | GwC | GwC | 63 | | 7.0 | McHenry | MdC2 | 9% | 53 | 5.2 | 7 | 6 | 5.4 | 1.1 | 4.8 | 7 | 6 | 4.9 | 1.1 | 0.5 | 3.5 | 5 | MdC2 | DnB | 62 | | 7.2 | Boyer | BoC2 | 9% | 47 | 2.3 | 2 | 4 | 3.8 | 0.1 | 1.5 | 1 | 2 | 1.5 | 0.0 | 2.4 | 17.3 | 3 | BoC2 | SeB | 64 | | 7.3 | Plano | PoB | 9% | 115 | 4.8 | 6 | 10 | 9.1 | 0.7 | 4.3 | 5 | 8 | 7.4 | 0.7 | 1.7 | 12.4 | 5 | PnC2 | PoB | 64 | | 7.4 | Ringwood | RnC2 | 9% | 96 | 5.1 | 9 | 15 | 13.2 | 2.3 | 4.8 | 9 | 11 | 9.2 | 1.9 | 4.4 | 32.6 | 5 | RnC2 | RnC2 | 63 | | 7.4 | Kidder | KdD2 | 16% | 56 | 1.7 | 2 | 1 | 1.1 | 0.3 | 1.6 | 2 | 1 | 0.9 | 0.3 | 0.2 | 1.5 | 5 | KdD2 | SmC2 | 64 | | 7.4 | Plano | PnB | 4% | 119 | 3.9 | 6 | 7 | 6.1 | 0.6 | 3.7 | 6 | 5 | 4.8 | 0.5 | 1.4 | 10.4 | 5 | PnB | PnB | 64 | | | | | : | 2017 Phosph | orus Report | - Cover Cr | ops | | | | | | | | | | | | | | |-------|-----------------|----------------|-------|--------------------|---------------------|--------------|--------------|------------|---------------|---------------------|--------------|--------------|----------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | With | out Cover | Crop | | | Wi | th Cover C | Crop | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
Pl | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. Pl | Soluble
PI | Annual P
change per
acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 7.6 | Dodge | DnB | 9% | 58 | 2.3 | 3 | 2 | 2.1 | 0.2 | 2.3 | 2 | 2 | 2.0 | 0.2 | 0.1 | 0.8 | 5 | MdC2 | DnB | 64 | | 7.6 | Plano | PnC2 | 9% | 86 | 1.9 | 4 | 10 | 8.7 | 1.3 | 1.4 | 3 | 5 | 3.7 | 1.0 | 5.3 | 40.3 | 5 | PnC2 | PnC2 | 64 | | 7.7 | Virgil | VrB | 3% | 77 | 0.9 | 2 | 2 | 1.1 | 0.8 | 0.8 | 2 | 2 | 0.8 | 0.7 | 0.4 | 3.1 | 5 | VrB | VrB | 64 | | 8.0 | McHenry | MdC2 | 9% | 30 | 4.2 | 5 | 13 | 12.6 | 0.6 | 3.6 | 4 | 11 | 10.2 | 0.5 | 2.5 | 20.0 | 5 | MdC2 | MdC2 | 62 | | 8.0 | Sable | SaA | 1% | 221 | 0.9 | 5 | 6 | 2.9 | 3.5 | 0.8 | 5 | 4 | 1.6 | 2.8 | 2.0 | 16.0 | 5 | SaA | SaA | 63 | | 8.0 | Ringwood | RnC2 | 9% | 58 | 2.3 | 4 | 8 | 6.6 | 1.0 | 2.0 | 4 | 4 | 3.5 | 0.9 | 3.2 | 25.6 | 5 | RnC2 | RnC2 | 64 | | 8.1 | McHenry | MDC2 | 9% | 89 | 3.9 | 5 | 3 | 2.6 | 0.4 | 3.9 | 5 | 3 | 2.4 | 0.4 | 0.2 | 1.6 | 5 | MdC2 | DnB | 64 | | 8.1 | Griswold | GwD2 | 16% | 21 | 3.1 | 4 | 7 | 6.7 | 0.2 | 2.8 | 4 | 6 | 5.4 | 0.2 | 1.3 | 10.5 | 4 | GwD2 | RnC2 | 64 | | 8.2 | Dodge | DnC2 | 8% | 136 | 1.2 | 2 | 3
| 2.4 | 0.6 | 1.1 | 2 | 3 | 2.2 | 0.6 | 0.2 | 1.6 | 5 | MdD2 | DnC2 | 64 | | 8.3 | Boyer | BoC2 | 9% | 161 | 1.4 | 2 | 2 | 1.3 | 1.0 | 1.1 | 2 | 2 | 1.0 | 0.9 | 0.4 | 3.3 | 3 | BoC2 | ВоВ | 64 | | 8.4 | Dodge | DnB | 9% | 50 | 2.3 | 2 | 2 | 2.0 | 0.3 | 2.3 | 2 | 2 | 1.9 | 0.3 | 0.1 | 0.8 | 5 | DnC2 | DnB | 64 | | 8.4 | Plano | PoB | 4% | 170 | 2.7 | 8 | 7 | 5.4 | 1.1 | 2.4 | 7 | 3 | 2.5 | 1.1 | 2.9 | 24.4 | 4 | РоВ | РоВ | 64 | | 8.7 | Boyer | BoD2 | 16% | 124 | 2.5 | 3 | 8 | 7.4 | 0.6 | 1.6 | 2 | 4 | 3.1 | 0.4 | 4.5 | 39.2 | 3 | BoD2 | DsB | 64 | | 9.0 | Griswold | GwC | 8% | 94 | 1.5 | 2 | 2 | 1.9 | 0.2 | 1.5 | 1 | 2 | 2.1 | 0.3 | -0.3 | -2.7 | 5 | GwC | GwC | 64 | | 9.0 | McHenry | MdC2 | 9% | 56 | 0.4 | 0.6 | 1.1 | 0.9 | 0.2 | 0.2 | 0.4 | 0.4 | 0.3 | 0.1 | 0.7 | 6.3 | 5 | MdC2 | Mdc2 | 65 | | 9.1 | Dresden | DrD2 | 16% | 47 | 2.9 | 3 | 8 | 7.6 | 0.3 | 1.9 | 2 | 3 | 3.1 | 0.3 | 4.5 | 41.0 | 3 | DrD2 | DrD2 | 64 | | 9.1 | Dresden | DsB | 2% | 83 | 1.9 | 1 | 1 | 0.7 | 0.4 | 1.8 | 1 | 1 | 0.6 | 0.4 | 0.1 | 0.9 | 3 | DsB | DsB | 64 | | 9.2 | Ringwood | RnC2 | 9% | 17 | 1.5 | 1 | 3 | 3.0 | 0.2 | 0.7 | 1 | 2 | 1.3 | 0.2 | 1.7 | 15.6 | 5 | RnC2 | RnC2 | 64 | | 9.2 | Ringwood | RnC2 | 9% | 54 | 2.8 | 4 | 9 | 8.4 | 0.7 | 2.4 | 4 | 6 | 5.9 | 0.5 | 2.7 | 24.8 | 5 | RnC2 | RnC2 | 64 | | 9.7 | Rockton | RoD2 | 10% | 60 | 1.8 | 2 | 6 | 4.9 | 1.1 | 1.5 | 2 | 3 | 2.2 | 1.0 | 2.8 | 27.2 | 2 | RoD2 | RoD2 | 64 | | 9.9 | Military | MhD2 | 16% | 33 | 1.2 | 1 | 2 | 1.8 | 0.2 | 1.4 | 1 | 2 | 1.5 | 0.2 | 0.3 | 3.0 | 3 | MhD2 | SmB | 64 | | 9.9 | Plano | PnB | 4% | 56 | 3.1 | 4 | 5 | 4.7 | 0.4 | 2.5 | 3 | 2 | 1.8 | 0.3 | 3.0 | 29.7 | 5 | PnB | PnB | 64 | | 10.0 | Dodge | DnC2 | 9% | 43 | 3.4 | 5 | 10 | 9.7 | 0.4 | 3.1 | 4 | 9 | 8.3 | 0.4 | 1.4 | 14.0 | 5 | MdC2 | DnC2 | 62 | | 10.0 | Griswold | GwC | 8% | 80 | 1.5 | 2 | 4 | 3.3 | 0.8 | 0.9 | 1 | 2 | 1.4 | 0.6 | 2.1 | 21.0 | 5 | GwC | PnB | 64 | | 10.0 | McHenry | MdC2 | 9% | 64 | 3.6 | 4 | 9 | 8.3 | 0.6 | 2.3 | 3 | 4 | 3.8 | 0.5 | 4.6 | 46.0 | 5 | MdC2 | MdC2 | 64 | | 10.0 | Sable | SaB | 4% | 72 | 2.0 | 5 | 4 | 2.7 | 1.1 | 1.5 | 4 | 2 | 1.2 | 0.8 | 1.8 | 18.0 | 5 | GwB | SaB | 64 | | 10.0 | Kidder | KdC2 | 9% | 36 | 3.6 | 2 | 4 | 4.0 | 0.2 | 2.2 | 2 | 2 | 1.6 | 0.1 | 2.5 | 25.0 | 5 | KdC2 | KdC2 | 64 | | 10.0 | Warsaw | WrC2 | 9% | 47 | 1.4 | 2 | 1 | 1.1 | 0.4 | 1.0 | 1 | 1 | 0.4 | 0.4 | 0.7 | 7.0 | 3 | WrC2 | PoB | 64 | | 10.0 | Plano | PnB | 2% | 92 | 1.8 | 4 | 4 | 2.9 | 0.8 | 1.6 | 3 | 2 | 1.3 | 0.6 | 1.8 | 18.0 | 5 | PnB | PnB | 64 | | 10.0 | McHenry | MdC2 | 9% | 173 | 0.3 | 0.9 | 1.2 | 0.6 | 0.6 | 0.5 | 1.3 | 1.9 | 1.2 | 0.7 | -0.7 | -7.0 | 5 | MdC2 | Mdc2 | 66 | | 10.2 | McHenry | MdC2 | 9% | 127 | 3.2 | 5 | 3 | 2.8 | 0.7 | 2.4 | 4 | 2 | 1.1 | 0.6 | 1.8 | 18.4 | 5 | MdC2 | MdC2 | 63 | | 10.2 | Batavia | BbB | 4% | 97 | 3.9 | 4 | 5 | 4.8 | 0.4 | 2.8 | 3 | 2 | 1.9 | 0.3 | 3.0 | 30.6 | 4 | BbB | BbB | 63 | | 10.2 | Dodge
Kidder | DnC2
KdD2 | 9% | 38 | 2.6 | 3 | 2 | 1.6
3.3 | 0.6 | 1.6 | 3 | 2 | 1.6 | 0.5 | 2.0 | 1.0
21.4 | 5 | DnC2
KdD2 | DnB
KdD2 | 64 | | 11.0 | | | 9% | 44 | | 4 | 5 | 4.8 | 0.2 | | 4 | 3 | 2.8 | | 2.0 | 22.0 | 5 | DnC2 | DnC2 | 63 | | 11.0 | Dodge
Edmund | DnC2
EdB2 | 4% | 163 | 3.6 | 4 | 6 | 4.8 | 1.8 | 0.9 | 3 | 4 | 2.8 | 0.3
1.5 | 2.0 | 25.3 | 1 | EdB2 | EdB2 | 64 | | | | | | | | | 4 | | | | | | | | 2.3 | | | | | | | 11.1 | Griswold | GwC
BbB | 8% | 13
46 | 2.1 | 3 | 1 | 2.5 | 0.2 | 2.1 | 3 | 1 | 1.0 | 0.2 | 0.1 | 28.9 | 5 | GwC
DsC2 | GwC
BbB | 64
64 | | 11.1 | Batavia | | 15% | 46 | 1.3 | 2 | 4 | 3.4 | 0.2 | 0.1 | 0 | 0 | | 0.2 | 3.4 | 38.4 | <u>3</u> | | 4 | 64 | | 11.3 | Griswold | GwD2 | 15% | 43 | 1.3 | | 4 | 3.4 | 0.4 | 0.1 | U | U | 0.2 | 0.2 | 3.4 | 38.4 | 4 | GwD2 | GwC | 64 | | | | | | | | With | out Cover | Crop | | | | Wi | th Cover C | rop | | | | | | | | |--------------|------------|----------------|-------|--------------------|---------------------|--------------|--------------|------------|---------------|---|---------------------|--------------|--------------|----------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Annual P
change per
acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 11.7 | Plano | PnB | 4% | 18 | 1.0 | 1 | 2 | 1.4 | 0.2 | | 0.7 | 1 | 1 | 0.5 | 0.1 | 1.0 | 11.7 | 5 | PnB | PnB | 64 | | 11.8 | Ringwood | RnC2 | 9% | 17 | 1.9 | 2 | 3 | 3.4 | 0.1 | | 1.0 | 1 | 2 | 1.5 | 0.1 | 1.9 | 22.4 | 5 | RnC2 | RnC2 | 64 | | 11.9 | Ringwood | RnC2 | 9% | 43 | 2.2 | 2 | 5 | 4.6 | 0.3 | _ | 0.2 | 0 | 0 | 0.2 | 0.2 | 4.5 | 53.6 | 5 | RnC2 | RnC2 | 64 | | 12.0 | Plano | PoB | 4% | 210 | 2.2 | 4 | 4 | 2.6 | 0.9 | _ | 2.2 | 4 | 3 | 2.6 | 0.9 | 0.0 | 0.0 | 4 | РоВ | РоВ | 64 | | 12.2 | St Charles | ScB | 4% | 75 | 1.0 | 2 | 4 | 2.5 | 1.0 | _ | 0.6 | 1 | 1 | 0.7 | 0.6 | 2.2 | 26.8 | 5 | ScB | ScB | 64 | | 12.3 | Kidder | KdD2 | 8% | 43 | 1.2 | 1 | 2 | 1.7 | 0.2 | | 0.8 | 1 | 1 | 0.7 | 0.1 | 1.1 | 13.5 | 5 | KdD2 | KdD2 | 63 | | 12.5 | Whalan | WxB | 4% | 101 | 1.7 | 3 | 5 | 3.8 | 0.9 | _ | 1.2 | 2 | 2 | 1.6 | 0.7 | 2.4 | 30.0 | 2 | WxB | Os | 64 | | 13.0 | McHenry | MdC2 | 9% | 91 | 2.3 | 2 | 5 | 4.6 | 0.2 | _ | 2.1 | 2 | 4 | 3.3 | 0.3 | 1.2 | 15.6 | 5 | MdC2 | MdC2 | 64 | | 13.1 | Plano | PnC2 | 12% | 71 | 2.5 | 3 | 7 | 6.1 | 1.0 | _ | 2.5 | 3 | 6 | 5.5 | 0.8 | 0.8 | 10.5 | 5 | KrD2 | PnC2 | 64 | | 13.2 | Rockton | RoC2 | 9% | 58 | 4.0 | 5 | 6 | 5.4 | 0.5 | _ | 2.0 | 2 | 2 | 1.9 | 0.4 | 3.6 | 47.5 | 2 | RoC2 | RoC2 | 64 | | 13.2 | Plano | PoB | 13% | 170 | 2.4 | 4 | 4 | 3.8 | 0.6 | _ | 1.9 | 3 | 3 | 2.6 | 0.6 | 1.2 | 15.8 | 2 | RpE | РоВ | 64 | | 13.2 | Rockton | RoC2 | 9% | 58 | 2.1 | 3 | 5 | 4.9 | 0.4 | _ | 1.4 | 2 | 2 | 1.7 | 0.3 | 3.3 | 43.6 | 2 | RoC2 | RoC2 | 64 | | 13.3 | McHenry | MdD2 | 16% | 85 | 3.0 | 4 | 4 | 3.5 | 0.4 | _ | 3.0 | 4 | 4 | 3.4 | 0.3 | 0.2 | 2.7 | 5 | MdD2 | DnC2 | 64 | | 13.5 | McHenry | MdD2 | 16% | 87 | 3.8 | 5 | 8 | 7.6 | 0.5 | | 3.5 | 5 | 7 | 6.6 | 0.5 | 1.0 | 13.5 | 5 | MdD2 | MdD2 | 62 | | 13.6 | Plano | PnC2 | 9% | 66 | 0.3 | 1 | 1 | 0.5 | 0.4 | | 0.1 | 0 | 0 | 0.2 | 0.3 | 0.4 | 5.4 | 5 | PnC2 | ScB | 62 | | 13.6 | Rockton | RoC2 | 9% | 64 | 7.8 | 9 | 9 | 7.6 | 0.9 | _ | 4.3 | 5 | 3 | 2.4 | 0.6 | 5.5 | 74.8 | 2 | RoC2 | RoC2 | 64 | | 13.6 | Rockton | RoC2 | 9% | 64 | 2.8 | 4 | 7 | 6.7 | 0.7 | | 2.1 | 3 | 3 | 2.2 | 0.5 | 4.7 | 63.9 | 2 | RoC2 | RoC2 | 64 | | 13.9 | McHenry | MdD2 | 16% | 113 | 4.6 | 7 | 19 | 18.0 | 0.8 | _ | 3.4 | 5 | 8 | 6.9 | 0.7 | 11.2 | 155.7 | 5 | MdD2 | MdD2 | 64 | | 13.9 | Troxel | TrB | 4% | 113 | 6.1 | 7 | 8 | 6.7 | 0.8 | | 5.8 | 7 | 6 | 5.4 | 0.7 | 1.4 | 19.5 | 4 | PoB | TrB | 64 | | 14.0 | Warsaw | WrC2 | 9% | 155 | 3.7 | 6 | 10 | 8.9 | 1.1 | _ | 3.2 | 5 | 5 | 4.2 | 0.9 | 4.9 | 68.6 | 3 | WrC2 | WrB | 64 | | 14.0 | Plano | PoB | 4% | 105 | 2.9 | 6 | 8 | 6.8 | 1.2 | _ | 2.8 | 6 | 7 | 5.7 | 1.2 | 1.1 | 15.4 | 4 | PoB | EgA | 64 | | 14.0 | Kidder | KdC2 | 9% | 25 | 1.0 | 2 | 4 | 1.0 | 2.7 | _ | 0.8 | 2 | 3 | 0.7 | 2.6 | 0.4 | 5.6 | 5 | KdC2 | KdC2 | 64 | | 14.0 | Elburn | EfB | 3% | 60 | 1.8 | 4 | 3 | 2.2 | 0.7 | _ | 1.6 | 3 | 1 | 1.0 | 0.5 | 1.4 | 19.6 | 5 | EfB | EfB | 64 | | 14.3 | Ringwood | RnC2 | 9% | 53 | 4.2 | 3 | 7 | 6.6 | 0.4 | _ | 4.1 | 3 | 2 | 1.9 | 0.2 | 4.9 | 70.1 | 5 | RnC2 | RnC2 | 63 | | 14.4 | Dodge | DnC2 | 9% | 27 | 4 | 4 | 3 | 3.2 | 0.1 | _ | 4.0 | 4 | 3 | 3.0 | 0.1 | 0.2 | 2.9 | 5 | DnC2 | Mdc2 | 64 | | 14.4 | Warsaw | WrC2 | 9% | 79 | 1.2 | 2 | 2 | 1.4 | 0.3 | _ | 1.2 | 2 | 2 | 1.8 | 0.5 | -0.6 | -8.6 | 3 | WrC2 | WrC2 | 64 | | 14.5 | Edmund | EdD2 | 16% | 24 | 5.7 | 6 | 6 | 5.2 | 0.5 | _ | 5.7 | 6 | 6 | 5.0 | 0.5 | 0.2 | 2.9 | 1 | EdD2 | GwB | 64 | | 15.0 | Griswold | GrC2 | 8% | 20 | 0.8 | 2 | 4 | 3.1 | 0.7 | _ | 0.4 | 1 | 2 | 1.8 | 0.7 | 1.3 | 19.5 | 4 | GrC2 | GrC2 | 64 | | 15.0 | Dodge | DoC2 | 9% | 26 | 3.6 | 5 | 3 | 3.0 | 0.3 | _ | 3.5 | 4 | 3 | 2.5 | 0.3 | 0.5 | 7.5 | 5 | DoC2 | DoC2 | 64 | | 15.0 | Whalan | WxC2 | 16% | 95 | 8.9 | 12 | 17 | 16.2 | 1.2 | _ | 7.9 | 11 | 8 | 7.2 | 1.0 | 9.2 | 138.0 | 2 | WxC2 | WxC2 | 64 | | 15.0 | Grays | GsB | 1% | 68 | 0.8 | 2 | 2 | 0.8 | 0.8 | - | 0.8 | 2 | 1 | 0.6 | 0.7 | 0.3 | 4.5 | 5 | GsB | Os | 64 | | 15.0 | Rockton | RoC2 | 9% | 35 | 2.1 | 2 | 3 | 2.3 | 0.3 | - | 2.0 | 2 | 2 | 2.2 | 0.3 | 0.1 | 1.5 | 2 | RoC2 | RoB | 64 | | 15.1 | Ringwood | RnB | 4% | 24 | 0.7 | 1 | 3 | 2.3 | 0.5 | - | 0.3 | 1 | 1 | 0.7 | 0.2 | 1.9 | 28.7
35.4 | 4 | PoB | RnB | 64 | | 15.4 | Ringwood | RnB | 8% | 20 | 5.0 | 5 | 6 | 5.5 | 0.3 | - | 4.6 | 4 | 4 | 3.3 | | 2.3 | | 5 | GwC | RnB | 64 | | 15.5
15.5 | Kidder | KdC2 | 8% | 66
31 | 5.2 | 5
6 | 6
7 | 5.7
6.9 | 0.6 | - | 3.8 | 5 | 6 | 2.1 | 0.3 | 3.9 | 60.5
17.1 | 5 | KdC2 | KdC2
PnC2 | 63 | | | Ringwood | RnC2 | 9% | | 5.1 | | | | 0.1 | _ | 4.8 | | | 5.8 | | | | | PnC2 | | | | 15.6 | Batavia | BbB | 4% | 83 | 3.8 | 5 | 7 | 6.6 | 0.7 | _ | 2.5 | 3 | 3 | 2.3 | 0.5 | 4.5 | 70.2 | 4 | BbB | BbB | 62 | | 15.7
16.0 | Virgil | VrB | 3% | 189
28 | 3.5 | 8 | 10
4 | 7.5
3.6 | 0.3 | _ | 0.7 | 5
1 | 5 | 3.0 | 0.3 | 5.3 | 83.2
22.4 | 5 | VrB
CrD3 | VrB
RdC2 | 64 | | 16.0 | Griswold | GrD2 | 16% | 28 | 1.3 | 2 | 4 | 3.6 | 0.3 | | U./ | 1 | | 2.2 | 0.3 | 1.4 | 22.4 | 5 | GrD2 | KdC2 | 64 | | | | | 2 | 2017 Phosph | orus Report | - Cover Cr | ops | | | | | | | | | | | | | | |-------|------------|----------------|-------|--------------------|---------------------|--------------|--------------|----------|---------------|---------------------
--------------|--------------|----------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | With | out Cover | Crop | | | Wi | th Cover C | rop | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Annual P
change per
acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 16.0 | Elburn | EoA | 2% | 64 | 0.6 | 1 | 1 | 0.5 | 0.7 | 0.6 | 1 | 1 | 0.4 | 0.7 | 0.1 | 1.6 | 5 | EoA | EoA | 69 | | 16.1 | Radford | RaA | 2% | 69 | 1.7 | 3 | 4 | 2.5 | 1.1 | 1.7 | 3 | 3 | 2.0 | 1.0 | 0.6 | 9.7 | 5 | RaA | RaA | 64 | | 16.3 | Ringwood | RnC2 | 9% | 142 | 5.4 | 10 | 15 | 11.6 | 3.1 | 4.5 | 8 | 11 | 8.2 | 3.0 | 3.5 | 57.1 | 5 | RnC2 | RnC2 | 63 | | 16.4 | Dresden | DrD2 | 16% | 151 | 1.7 | 3 | 4 | 2.9 | 0.8 | 1.3 | 3 | 3 | 2.4 | 0.7 | 0.6 | 9.8 | 3 | DrD2 | TrB | 64 | | 16.4 | Dresden | DrD2 | 16% | 151 | 3.1 | 8 | 13 | 11.7 | 0.9 | 1.6 | 4 | 6 | 4.7 | 0.8 | 7.1 | 116.4 | 3 | DrD2 | TrB | 64 | | 16.6 | Dresden | DsC2 | 9% | 31 | 3.1 | 3 | 8 | 7.5 | 0.2 | 2.1 | 2 | 3 | 2.8 | 0.2 | 4.7 | 78.0 | 3 | DsC2 | DsC2 | 64 | | 16.8 | Griswold | GwC | 9% | 122 | 1.8 | 4 | 5 | 4.6 | 0.7 | 1.2 | 3 | 3 | 1.5 | 1.1 | 2.7 | 45.4 | 5 | GwC | GwC | 63 | | 16.8 | St Charles | ScB | 4% | 53 | 1.0 | 1 | 3 | 2.5 | 0.4 | 0.7 | 1 | 1 | 0.7 | 0.4 | 1.8 | 30.2 | 5 | ScB | ScB | 64 | | 17.0 | Troxel | TrB | 4% | 54 | 6.4 | 7 | 8 | 6.9 | 0.7 | 4.2 | 5 | 5 | 4.4 | 0.6 | 2.6 | 44.2 | 5 | PnB | TrB | 64 | | 17.1 | Ringwood | RnC2 | 9% | 68 | 1.7 | 3 | 4 | 3.0 | 0.5 | 1.7 | 3 | 3 | 2.1 | 0.4 | 1.0 | 17.1 | 5 | RnC2 | RnC2 | 64 | | 17.3 | Kidder | KrD2 | 15% | 67 | 5.2 | 6 | 5 | 4.4 | 0.4 | 2.7 | 4 | 1 | 0.5 | 0.3 | 4.0 | 69.2 | 5 | KrD2 | KrD2 | 63 | | 17.3 | Griswold | GwC | 9% | 47 | 0.9 | 2 | 2 | 1.9 | 0.3 | 0.8 | 1 | 1 | 0.8 | 0.2 | 1.2 | 20.8 | 5 | GwC | GwC | 64 | | 17.6 | Whalen | WxD2 | 16% | 47 | 2.5 | 2 | 8 | 7.5 | 0.3 | 1.8 | 2 | 4 | 3.9 | 0.3 | 3.6 | 63.4 | 2 | WxD2 | TrB | 64 | | 17.7 | Plano | PnC2 | 9% | 32 | 4.3 | 5 | 8 | 7.6 | 0.2 | 3.7 | 4 | 6 | 5.7 | 0.2 | 1.9 | 33.6 | 5 | PnC2 | PnB | 64 | | 18.0 | Griswold | GwC | 9% | 49 | 1.2 | 1 | 1 | 0.8 | 0.3 | 0.9 | 1 | 1 | 0.6 | 0.3 | 0.2 | 3.6 | 5 | GwC | PnB | 64 | | 18.5 | Ringwood | RnC2 | 9% | 51 | 2.6 | 3 | 2 | 1.8 | 0.3 | 2.4 | 3 | 2 | 1.2 | 0.3 | 0.6 | 11.1 | 5 | RnC2 | RnC2 | 64 | | 18.7 | Dresden | DsC2 | 8% | 106 | 2.7 | 4 | 9 | 8.6 | 0.8 | 2.2 | 4 | 5 | 4.2 | 0.7 | 4.5 | 84.2 | 3 | DsC2 | BbB | 64 | | 18.7 | Ringwood | RnB | 4% | 61 | 2.0 | 2 | 4 | 3.3 | 0.3 | 2.0 | 2 | 3 | 2.1 | 0.5 | 1.0 | 18.7 | 5 | RnB | RnB | 64 | | 18.8 | Dodge | DnC2 | 9% | 51 | 3.4 | 4 | 5 | 5.7 | 0.4 | 3.2 | 4 | 6 | 5.8 | 0.4 | -0.1 | -1.9 | 5 | DnC2 | DnB | 62 | | 18.8 | Ringwood | RdC2 | 9% | 38 | 3.1 | 4 | 3 | 2.5 | 0.3 | 3.0 | 4 | 2 | 2.1 | 0.3 | 0.4 | 7.5 | 5 | RdC2 | RdC2 | 64 | | 18.9 | Dresden | DsC2 | 9% | 56 | 2.3 | 3 | 6 | 5.7 | 0.2 | 1.1 | 2 | 1 | 0.6 | 0.3 | 5.0 | 94.5 | 3 | DsC2 | РоВ | 62 | | 19.2 | Plano | PnB | 4% | 48 | 3.8 | 4 | 6 | 5.4 | 0.4 | 3.4 | 4 | 5 | 4.3 | 0.3 | 1.2 | 23.0 | 5 | PnB | PnB | 64 | | 19.6 | Virgil | VrB | 4% | 82 | 4.4 | 6 | 6 | 5.4 | 0.7 | 4.2 | 5 | 5 | 4.4 | 0.6 | 1.1 | 21.6 | 5 | PNB | VrB | 64 | | 19.9 | Batavia | BbB | 2% | 173 | 2.7 | 8 | 10 | 8.5 | 1.4 | 2.5 | 7 | 8 | 7.1 | 1.1 | 1.7 | 33.8 | 4 | BbB | BbB | 63 | | 20.0 | Ringwood | RnC2 | 9% | 46 | 1.1 | 1 | 1 | 1.0 | 0.3 | 1.1 | 1 | 1 | 0.8 | 0.3 | 0.2 | 4.0 | 5 | RnC2 | PnA | 64 | | 20.0 | Plano | PoB | 4% | 57 | 2.8 | 3 | 5 | 4.7 | 0.4 | 2.6 | 3 | 4 | 3.9 | 0.4 | 0.8 | 16.0 | 4 | PoB | РоВ | 64 | | 20.3 | Plano | PoB | 4% | 60 | 3.6 | 4 | 5 | 4.9 | 0.4 | 3.5 | 3 | 4 | 4.0 | 0.4 | 0.9 | 18.3 | 4 | РоВ | PoA | 64 | | 20.5 | Radford | RaA | 2% | 85 | 0.4 | 2 | 2 | 0.8 | 1.1 | 0.3 | 1 | 1 | 0.4 | 0.9 | 0.6 | 12.3 | 5 | RaA | RaA | 64 | | 20.6 | Ringwood | RnC2 | 9% | 17 | 2.8 | 4 | 2 | 2.1 | 0.3 | 1.9 | 3 | 1 | 1.0 | 0.3 | 1.1 | 22.7 | 5 | RnC2 | PnB | 64 | | 20.9 | Plano | PnB | 4% | 43 | 6.4 | 7 | 7 | 6.4 | 0.6 | 4.2 | 4 | 5 | 4.1 | 0.5 | 2.4 | 50.2 | 5 | PnB | TrB | 64 | | 21.0 | McHenry | MdC2 | 9% | 27 | 2.1 | 3 | 4 | 3.4 | 0.2 | 1.6 | 2 | 2 | 1.9 | 0.1 | 1.6 | 33.6 | 5 | MdC2 | MdC2 | 64 | | 21.5 | Griswold | GwD2 | 15% | 27 | 2.9 | 4 | 3 | 2.3 | 0.4 | 2.3 | 3 | 2 | 1.4 | 0.4 | 0.9 | 19.4 | 4 | GwD2 | WrB | 64 | | 21.8 | Plano | PnC2 | 9% | 41 | 1.0 | 1 | 2 | 2.2 | 0.2 | 0.2 | 1 | 1 | 0.5 | 0.2 | 1.7 | 37.1 | 5 | PnC2 | PnB | 64 | | 22.0 | Rockton | RoD2 | 21% | 72 | 3.5 | 5 | 10 | 9.8 | 0.7 | 1.8 | 3 | 5 | 4.1 | 0.6 | 5.8 | 127.6 | 2 | RoD2 | RoC2 | 64 | | 22.0 | St Charles | ScB | 4% | 153 | 0.2 | 1 | 1.2 | 0.5 | 0.7 | 0.4 | 1.3 | 1.8 | 1.0 | 0.8 | -0.6 | -13.2 | 5 | ScB | ScB | 66 | | 22.2 | Plano | PnB | 4% | 60 | 0.8 | 1 | 2 | 1.2 | 0.3 | 0.3 | 1 | 1 | 0.2 | 0.3 | 1.0 | 22.2 | 5 | PnB | PnB | 64 | | 22.5 | Troxel | TrB | 4% | 103 | 2.4 | 4 | 5 | 4.4 | 0.5 | 2.2 | 3 | 4 | 3.8 | 0.4 | 0.7 | 15.8 | 3 | DsB | TrB | 64 | | 22.5 | Dresden | DsB | 4% | 103 | 2.3 | 4 | 6 | 5.5 | 0.5 | 2.2 | 4 | 5 | 4.6 | 0.5 | 0.9 | 20.3 | 3 | DsB | TrB | 64 | | 24.0 | Kidder | KdD2 | 16% | 65 | 3.5 | 3 | 8 | 7.1 | 0.5 | 2.4 | 2 | 4 | 3.6 | 0.2 | 3.8 | 91.2 | 5 | KdD2 | ScC2 | 62 | | | | | : | 2017 Phospho | orus Report | - Cover Cr | ops | | | | | | | | | | | | | | | | |--------------|------------|----------------|-------|--------------------|---------------------|--------------|--------------|------------|---------------|---|---------------------|--------------|--------------|----------|---------------|-----|-----------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | With | out Cover | Crop | • | | | Wi | th Cover C | Crop | | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. Pl | Soluble
PI | cha | nnual P
ange per
acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 24.7 | Griswold | GwC | 8% | 51 | 1.4 | 2 | 2 | 1.5 | 0.4 | | 1.2 | 1 | 2 | 1.5 | 0.4 | | 0.0 | 0.0 | 5 | GwC | GwC | 63 | | 24.7 | Troxel | TrB | 2% | 151 | 3.1 | 6 | 6 | 4.5 | 1.4 | | 2.9 | 6 | 3 | 1.8 | 1.0 | | 3.1 | 76.6 | 5 | TrB | TrB | 64 | | 25.0 | Plano | PnA | 1% | 129 | 1.8 | 4 | 4 | 3.8 | 0.7 | | 1.5 | 4 | 3 | 2.6 | 0.7 | | 1.2 | 30.0 | 5 | PnA | PnA | 64 | | 25.0 | Plano | PnB | 4% | 66 | 3.5 | 5 | 7 | 7.1 | 0.3 | | 3.4 | 5 | 6 | 5.8 | 0.3 | | 1.3 | 32.5 | 5 | PnB | PnB | 64 | | 25.2 | Plano | PnB | 4% | 26 | 1.3 | 2 | 2 | 1.6 | 0.2 | _ | 1.2 | 2 | 2 | 1.3 | 0.2 | | 0.3 | 7.6 | 5 | PnB | PnB | 64 | | 25.6 | Ringwood | RnC2 | 9 | 46 | 3.7 | 5 | 11 | 10.0 | 1.2 | _ | 3.1 | 5 | 8 | 6.3 | 2.2 | | 2.7 | 69.1 | 5 | RnC2 | GwC | 64 | | 25.8 | Plano | PnB | 4% | 158 | 3.4 | 6 | 9 | 8.6 | 0.7 | _ | 3.3 | 6 | 8 | 7.0 | 0.6 | | 1.7 | 43.9 | 5 | PnB | PnB | 64 | | 26.0 | Griswold | GwC | 8% | 23 | 7.4 | 7 | 7 | 6.6 | 0.6 | _ | 4.9 | 4 | 5 | 4.3 | 0.5 | | 2.4 | 62.4 | 5 | GwC | TrB | 64 | | 26.0 | Ringwood | RnC2 | 15% | 14 | 3.5 | 2 | 4 | 4.2 | 0.0 | | 2.1 | 2 | 2 | 2.0 | 0.0 | | 2.2 | 57.2 | 4 | GwD2 | RnC2 | 64 | | 26.6 | McHenry | MdD2 | 16% | 64 | 7.9 | 4 | 11 | 10.9 | 0.2 | | 4.1 | 2 | 4 | 3.4 | 0.1 | | 7.6 | 202.2 | 5 | MdD2 | MdD2 | 62 | | 27.0 | Kidder | KrD2 | 10% | 17 | 5.3 | 7 | 11 | 10.5 | 0.3 | _ | 3.0 | 4 | 4 | 3.6 | 0.2 | | 7.0 | 189.0 | 5 | KrD2 | KrD2 | 64 | | 27.0 | Griswold | GwD2 | 16% | 56 | 1.2 | 3 | 11 | 10.3 | 1.0 | _ | 1.0 | 2 | 7 | 6.5 | 0.9 | | 3.9 | 105.3 | 4 | GwD2 | GwD2 | 64 | | 28.1 | Boyer | BoC2 | 9% | 78 | 4.0 | 2 | 4 | 1.4 | 3.0 | _ | 3.2 | 2 | 3 | 0.8 | 2.6 | | 1.0 | 28.1 | 3 | BoC2 | EgA | 64 | | 29.3 | St Charles | ScB | 4% | 120 | 1.9 | 4 | 7 | 5.7 | 0.9 | _ | 1.5 | 3 | 4 | 3.0 | 0.7 | | 2.9 | 85.0 | 5 | ScB | TrB | 64 | | 29.3 | McHenry | MdD2 | 6% | 39 | 1.7 | 3 | 2 | 2.2 | 0.2 | _ | 1.5 | 2 | 1 | 1.2 | 0.2 | | 1.0 | 29.3 | 5 | MdD2 | MdD2 | 64 | | 29.4 | McHenry | MdC2 | 9% | 24 | 4.3 | 4 | 10 | 9.3 | 0.4 | _ | 2.7 | 3 | 3 | 2.4 | 0.4 | | 6.9 | 202.9 | 5 | MdC2 | HaA | 64 | | 30.0 | Kegonsa | KeB | 4% | 74 | 2.7 | 3 | 5 | 4.1 | 0.6 | _ | 2.4 | 2 | 4 | 3.0 | 0.5 | | 1.2 | 36.0 | 3 | KeB | KeB | 64 | | 30.1 | Ringwood | RnC2 | 9% | 91 | 2.4 | 3 | 3 | 2.8 | 0.5 | | 2.0 | 3 | 2 | 1.5 | 0.5 | | 1.3 | 39.1 | 5 | RnC2 | RnC2 | 64 | | 30.8 | Plano | PoB | 4% | 140 | 3.7 | 7 | 11 | 9.7 | 1.4 | | 3.5 | 7 | 9 | 8.0 | 1.1 | | 2.0 | 61.6 | 4 | РоВ | PoB | 63 | | 31.1 | Orion | Os | 1% | 82 | 1.0 | 3 | 3 | 1.9 | 1.4 | _ | 0.9 | 3 | 2 | 1.0 | 1.0 | | 1.3 | 40.4 | 5 | Os | Os | 64 | | 31.2 | Troxel | TrB | 2% | 71 | 0.9 | 2 | 2 | 1.6 | 0.5 | _ | 0.8 | 2 | 1 | 0.7 | 0.4 | | 1.0 | 31.2 | 5 | TrB | TrB | 64 | | 31.8 | McHenry | MdC2 | 9% | 59 | 3.3 | 4 | 10 | 9.1 | 0.6 | _ | 2.0 | 2 | 4 | 3.7 | 0.5 | | 5.5 | 174.9 | 5 | MdC2 | DnC2 | 62 | | 31.9 | Plano | PoB | 4% | 98 | 2.1 | 4 | 7 | 5.6 | 1.0 | _ | 1.9 | 3 | 5 | 4.0 | 0.9 | | 1.7 | 54.2 | 4 | РоВ | РоВ | 63 | | 33.6 | Kidder | KdC2 | 9% | 27 | 0.5 | 1 | 1 | 0.9 | 0.3 | _ | 0.5 | 1 | 1 | 0.8 | 0.3 | | 0.1 | 3.4 | 5 | KdC2 | DnB | 64 | | 33.7 | Virgil | VrB | 3% | 65 | 1.3 | 3 | 2 | 1.2 | 0.8 | _ | 1.3 | 3 | 2 | 0.9 | 0.7 | | 0.4 | 13.5 | 5 | VrB | VrB | 64 | | 33.8 | Griswold | GwD2 | 16% | 19 | 0.8 | 1 | 1 | 0.8 | 0.1 | - | 0.9 | 1 | 1 | 0.4 | 0.2 | | 0.3 | 10.1 | 2 | WxD2 | GwD2 | 64 | | 34.0 | Sable | SaB | 4% | 49 | 1.5 | 2 |
2 | 1.6 | 0.3 | - | 1.4 | 1 | 2 | 1.4 | 0.3 | | 0.2 | 6.8 | 5 | SaB | SaB | 69 | | 34.5 | Seaton | SmC2 | 9% | 32 | 1.4 | 2 | 2 | 2.1 | 0.2 | - | 1.4 | 1 | 2 | 1.8 | 0.2 | | 0.3 | 10.4 | 5 | SmC2 | SmC2 | 64 | | 35.0 | Ringwood | RnC2 | 9% | 36 | 1.1 | 1 | 2 | 1.5 | 0.3 | - | 1.0 | 1 | 1 | 1.0 | 0.3 | | 0.5 | 17.5 | 5 | RnC2 | RnB | 64 | | 36.9 | Dresden | DsC2 | 12% | 54 | 6.1 | 7 | 5 | 4.7 | 0.6 | - | 6.2 | 7 | 6 | 5.3 | 0.7 | | -0.7 | -25.8 | 3 | DsC2 | DsC2 | 63 | | 37.0 | Griswold | GwD2 | 15% | 82 | 1.7 | 2 | 3 | 2.1 | 0.6 | - | 1.2 | 2 | 1 | 0.7 | 0.5 | | 1.5 | 55.5 | 4 | GwD2 | RnC2 | 64 | | 38.6 | Whalan | WxD2 | 16% | 25 | 2.0 | 1 | 1 | 0.8 | 0.3 | - | 0.8 | 1 | 1 | 0.3 | 0.3 | | 0.5 | 19.3 | 2 | WxD2 | WxD2 | 64 | | 39.1
39.5 | Dresden | DsC2 | 9 | 118 | 4.8 | 2 | 2 | 1.2
5.8 | 1.2 | - | 2.8 | 2 | 3 | 0.7 | 0.8 | | 0.9 | 35.2
114.6 | 3 | DsC2 | DsC2 | 64 | | | Dresden | DsC2 | 9% | 39 | 4.5 | 4 | 6 | | 0.4 | - | 2.8 | 3 | | 3.0 | 0.3 | | 2.9 | | 3 | DsC2 | PoB | 64 | | 41.8
42.0 | Plano | PnB | 4% | 84 | 4.4 | 6 | 9 | 8.3
3.0 | 0.6 | - | 3.8 | 6
2 | 6 | 5.3 | 0.7 | | 1.3 | 121.2 | 5 | PnB | PnB
TrB | 64
64 | | | Troxel | TrB | 4% | | 1.4 | | | | 0.3 | _ | 1.1 | | | 1.7 | | | | 54.6 | | PnB | | | | 43.0 | Plano | PnB | 4% | 81 | 1.9 | 3 | 5 | 4.7 | 0.6 | - | 1.7 | 3 | 3 | 2.9 | 0.5 | | 2.7 | 81.7 | 5 | PnB | PnB | 64 | | 44.1
46.0 | St Charles | ScB | 5% | 135
70 | 3.7 | 5 | 6
5 | 4.7
4.7 | 0.7 | - | 3.0 | 4
5 | 4 | 2.2 | 0.5 | | 1.0 | 119.1
46.0 | 5 | ScB | ScB | 63
64 | | 46.0 | Plano | PnC2 | 9% | 70 | 3./ | 5 | 5 | 4./ | 0.3 | | 3.8 | 5 | 4 | 3.6 | 0.4 | | 1.0 | 46.0 | 5 | PnC2 | PnB | j 64 | | | | | 2 | 2017 Phosph | orus Report | t - Cover Cr | rops | | | | | | | | | | | | | | | |---------|-------------|----------------|-------|--------------------|---------------------|-----------------|----------------------|----------------------|---------------|---|---------------------|---------------|----------------|--------------------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | With | out Cover | Crop | | | | Wi | th Cover C | rop | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | | Actual
Soil Loss | Rotat.
Pl | Annual
PI | Part. PI | Soluble
PI | Annual P
change per
acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 46.1 | Plano | PoA | 4% | 160 | 3.4 | 9 | 13 | 11.4 | 2.1 | | 3.0 | 8 | 7 | 5.5 | 1.7 | 6.3 | 290.4 | 4 | BbB | PoA | 64 | | 47.4 | Ringwood | RnC2 | 9% | 27 | 2.9 | 3 | 5 | 5.1 | 0.4 | _ | 1.6 | 2 | 2 | 2.2 | 0.3 | 3.0 | 142.2 | 5 | RnC2 | ScB | 64 | | 50.7 | Plano | PnB | 4% | 61 | 2.9 | 4 | 5 | 4.2 | 4.0 | | 2.3 | 3 | 2 | 1.6 | 0.3 | 6.3 | 319.4 | 5 | PnB | PnB | 64 | | 54.0 | Ringwood | RnC2 | 9% | 77 | 4.0 | 6 | 7 | 6.3 | 0.4 | | 2.1 | 2 | 2 | 1.6 | 0.1 | 5.0 | 270.0 | 5 | RnC2 | RnC2 | 64 | | 55.0 | Plano | PIB | 4% | 125 | 1.3 | 2 | 1 | 0.8 | 0.6 | Ī | 1.2 | 2 | 1 | 0.7 | 0.7 | 0.0 | 0.0 | 5 | PIB | PIB | 69 | | 57.0 | Kegonsa | KeB2 | 4% | 46 | 1.8 | 2 | 2 | 1.6 | 0.2 | Ī | 1.7 | 1 | 2 | 1.5 | 0.2 | 0.1 | 5.7 | 5 | KeB2 | KeB2 | 69 | | 58.0 | Griswold | GwC | 8% | 61 | 1.9 | 2 | 4 | 3.0 | 0.6 | Ī | 1.1 | 1 | 2 | 1.4 | 0.5 | 1.7 | 98.6 | 5 | GwC | GwC | 64 | | 60.9 | Plano | PoB | 4% | 89 | 1.0 | 1 | 1 | 0.7 | 0.5 | | 0.4 | 1 | 1 | 0.2 | 0.5 | 0.5 | 30.5 | 4 | PoB | РоВ | 64 | | 71.4 | Dresden | DsC2 | 9% | 113 | 8.0 | 4 | 3 | 2.2 | 1.2 | Ī | 3.0 | 2 | 2 | 0.9 | 0.7 | 1.8 | 128.5 | 3 | DsC2 | DsC2 | 64 | | 75.0 | Rockton | RoD2 | 21% | 36 | 1.9 | 2 | 3 | 2.7 | 0.4 | Ī | 1.6 | 2 | 2 | 1.9 | 0.4 | 0.8 | 60.0 | 2 | RoD2 | RnC2 | 64 | | 90.0 | Plano | PIA | 1% | 48 | 0.3 | 1 | 1 | 0.3 | 0.2 | Ī | 0.3 | 0 | 0 | 0.3 | 0.2 | 0.0 | 0.0 | 5 | PIA | PIA | 69 | | 110.0 | Batavia | BbA | 9% | 16 | 1.3 | 1 | 1 | 0.5 | 0.0 | | 1.1 | 1 | 0 | 0.5 | 0.0 | 0.0 | 0.0 | 4 | BbA | BbC2 | 69 | | 111.0 | Plano | PmA | 1% | 45 | 0.5 | 0 | 0 | 0.2 | 0.1 | | 0.4 | 0 | 0 | 0.2 | 0.1 | 0.0 | 0.0 | 4 | PmA | PmA | 69 | | 114.0 | Sable | SaB | 4% | 27 | 1.5 | 1 | 2 | 1.3 | 0.2 | | 1.4 | 1 | 1 | 1.2 | 0.2 | 0.1 | 11.4 | 5 | SaB | SaB | 69 | | 117.0 | Plano | PmA | 1% | 40 | 0.4 | 1 | 0 | 0.3 | 0.1 | | 0.4 | 0 | 0 | 0.2 | 0.1 | 0.1 | 11.7 | 4 | PmA | PmA | 69 | | 121.0 | Plano | PIA | 1% | 40 | 0.4 | 1 | 1 | 0.5 | 0.2 | | 0.4 | 1 | 1 | 0.4 | 0.2 | 0.1 | 12.1 | 5 | PIA | PIA | 69 | | 153.0 | Dresden | DsB | 4% | 33 | 1.1 | 1 | 1 | 0.7 | 0.1 | | 1.1 | 1 | 1 | 0.6 | 0.1 | 0.1 | 15.3 | 3 | DsB | DsB | 69 | | 4,483.4 | Total Acres | | 212 | Total
Fields | | 62
225 acres | 63
363.4
acres | 64
2,872
acres | | | | 65
9 acres | 66
36 acres | 69
978
acres | | Average
Change in P
Loss | 1.8 | Medium
Change in P
Loss | 1.2 | Total Lbs P | 7,299.7 | | | | 2 | 2017 Pho | osphorus Rep | oort - Low Di | isturbance | Deep Tilla | age | | | | | | | | | | | | | |-------|--------------------|----------------|----------|--------------------|---------------------|--------------|--------------|-----------|---------------|---------------------|--------|--------------|------------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | Without | LDDT + Co | over Crop | • | | V | Vith LDDT | + Cover Cı | rop | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Actual
Soil Loss | Rotat. | Annual
PI | Part. PI | Soluble
PI | Annual P
change per
acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 5.7 | Dodge | DnC2 | 9% | 74 | 3.9 | 6 | 10 | 9.2 | 0.8 | 2.3 | 5 | 4 | 3.2 | 0.6 | 6.2 | 35.3 | 5 | DnC2 | DnC2 | 64 | | 5.9 | Batavia | BbB | 4% | 30 | 1.6 | 2 | 1 | 1.2 | 0.2 | 5.3 | 2 | 1 | 0.9 | 0.2 | 0.3 | 1.8 | 4 | BbB | BbB | 64 | | 6.4 | Kidder | KrE2 | 28% | 59 | 5.2 | 5 | 9 | 8.4 | 0.4 | 1.0 | 5 | 6 | 5.2 | 0.3 | 3.3 | 21.1 | 5 | KrE2 | PnB | 64 | | 7.4 | Plano | PnB | 4% | 119 | 2.8 | 4 | 5 | 4.9 | 0.5 | 3.0 | 4 | 4 | 4.0 | 0.5 | 0.9 | 6.7 | 5 | PnB | PnB | 64 | | 7.5 | Houghton | Но | 1% | 61 | 0.1 | 1 | 2 | 0.1 | 1.4 | 2.5 | 1 | 1 | 0.2 | 0.6 | 0.7 | 5.3 | 2 | Но | Но | 64 | | 7.5 | Kidder | KdD2 | 16% | 56 | 6.1 | 6 | 8 | 7.7 | 0.4 | 2.6 | 4 | 3 | 2.8 | 0.3 | 5.0 | 37.5 | 5 | KdD2 | PnC2 | 64 | | 8.1 | Griswold | GwC | 8% | 103 | 2.2 | 4 | 5 | 4.1 | 1.1 | 1.4 | 3 | 3 | 1.8 | 0.8 | 2.6 | 21.1 | 5 | GwC | RnB | 64 | | 9.0 | Dresden | DsC2 | 9% | 74 | 2.8 | 4 | 4 | 3.4 | 0.5 | 2.4 | 4 | 4 | 2.9 | 0.6 | 0.4 | 3.6 | 3 | DsC2 | DsC2 | 64 | | 9.0 | Whalan | WxC2 | 9% | 14 | 2.1 | 3 | 2 | 1.4 | 0.5 | 0.9 | 2 | 1 | 1.0 | 0.4 | 0.5 | 4.5 | 2 | WxC2 | WxB | 64 | | 9.0 | Dresden | DsC2 | 9% | 74 | 2.8 | 4 | 4 | 3.4 | 0.5 | 1.7 | 4 | 4 | 2.9 | 0.6 | 0.4 | 3.6 | 3 | DsC2 | DsC2 | 64 | | 9.8 | Troxel | TrB | 9% | 55 | 3.5 | 4 | 6 | 6.1 | 0.3 | 4.6 | 2 | 2 | 2.0 | 0.3 | 4.1 | 40.2 | 5 | RnC2 | TrB | 64 | | 10.0 | Batavia | BbC2 | 9% | 38 | 3.0 | 4 | 6 | 5.4 | 0.3 | 2.2 | 3 | 4 | 4.2 | 0.3 | 1.2 | 12.0 | 4 | BbC2 | TrB | 64 | | 10.0 | Whalan | WxD2 | 8% | 32 | 2.3 | 3 | 6 | 4.9 | 0.6 | 4.5 | 3 | 4 | 3.1 | 0.5 | 1.9 | 19.0 | 2 | WxD2 | WxD2 | 64 | | 10.1 | Ringwood | RnC2 | 9% | 39 | 2.9 | 4 | 8 | 7.6 | 0.6 | 3.0 | 4 | 6 | 5.3 | 0.5 | 2.4 | 24.2 | 5 | RnC2 | RnC2 | 64 | | 10.2 | Kidder | KrD2 | 15% | 59 | 4.0 | 4 | 9 | 8.3 | 0.2 | 1.1 | 4 | 7 | 7.3 | 0.2 | 1.0 | 10.2 | 5 | KrD2 | PnC2 | 64 | | 10.3 | St Charles | ScD2 | 16% | 58 | 3.4 | 4 | 6 | 5.5 | 0.2 | 0.8 | 2 | 2 | 1.7 | 0.2 | 3.8 | 39.1 | 4 | ScD2 | PnB | 64 | | 11.0 | Ringwood | RnC2 | 9% | 55 | 4.2 | 5 | 10 | 9.2 | 0.5 | 3.0 | 4 | 6 | 5.7 | 0.4 | 3.6 | 39.6 | 5 | RnC2 | RnC2 | 64 | | 11.0 | Batavia | BbB | 4% | 13 | 1.7 | 1 | 2 | 2.3 | 0.1 | 2.8 | 1 | 2 | 2.2 | 0.1 | 0.1 | 1.1 | 4 | BbB | VwA | 62 | | 11.5 | Warsaw | WrC2 | 9% | 105 | 1.0 | 2 | 2 | 1.5 | 0.7 | 4.2 | 2 | 2 | 1.3 | 0.7 | 0.2 | 2.3 | 2 | RoC2 | WrC2 | 64 | | 11.5 | Warsaw | WrC2 | 9% | 105 | 1.2 | 2 | 5 | 4.7 | 0.8 | 2.9 | 2 | 3 | 2.5 | 0.7 | 2.3 | 26.5 | 2 | RoC2 | WrC2 | 64 | | 13.3 | McHenry | MdC2 | 16% | 15 | 4.7 | 4 | 12 | 12.1 | 0.2 | 1.7 | 4 | 12 | 11.8 | 0.2 | 0.3 | 4.0 | 5 | MdD2 | MdC2 | 62 | | 13.6 | Rockton | RoD2 | 21% | 12 | 2.5 | 3 | 13 | 11.9 | 0.6 | 1.5 | 2 | 11 | 10.2 | 0.6 | 1.7 | 23.1 | 2 | RoD2 | RoD2 | 62 | | 14.0 | Plano | PnC2 | 9% | 98 | 3.4 | 6 | 7 | 6.0 | 0.9 | 2.3 | 5 | 3 | 2.4 | 0.7 | 3.8 | 53.2 | 5 | PnC2 | PnC2 | 64 | | 14.3 | Grays | GsB | 4% | 93 | 2.9 | 6 | 7 | 5.0 | 1.7 | 5.3 | 5 | 4 | 2.8 | 1.6 | 2.3 | 32.9 | 5 | GsB | GsB | 64 | | 14.7 | Griswold | GwC | 9%
9% | 28 | 2.6 | 4 | 2 | 2.2 | 0.2 | 3.0 | 4 | 1 | 1.1 | 0.2 | 1.1 | 16.2
16.2 | 5 | GwC | Gwc | 64 | | 14.7 | Griswold
Plano | GwC
PnB | 4% | 65 | 0.8 | 1 | 2 | 1.6 | 0.2 | 2.5 | 1 | 1 | 0.7 | 0.2 | 1.1 | 16.2 | 5 | GwC
PnB | Gwc
PnB | 64 | | 15.0 | Ringwood | RnC2 | 9% | 48 | 3.5 | 4 | 4 | 3.3 | 0.4 | 1.1 | 3 | 2 | 1.8 | 0.3 | 1.5 | 22.5 | 3 | RnC2 | PnB | 62 | | 15.3 | · | BbB | 4% | 114 | 1.9 | 4 | 12 | 10.5 | 1.0 | 0.1 | 4 | 8 | 6.8 | 1.2 | 3.5 | 53.6 | 3 | KIICZ | BbB | 64 | | 18.4 | Batavia
Dresden | DrD2 | 16% | 60 | 5.3 | 6 | 16 | 14.8 | 1.1 | 0.1 | 5 | 7 | 6.5 | 0.9 | 8.5 | 156.4 | 3 | DrD2 | KeB | 64 | | 18.6 | Ringwood | RnC2 | 9% | 58 | 5 | 6 | 5 | 4.2 | 0.3 | 0.8 | 6 | 3 | 2.3 | 0.6 | 1.6 | 29.8 | 5 | RnC2 | RnC2 | 62 | | 20.0 | Plano | PnB | 4% | 96 |
0.8 | 2 | 3 | 0.7 | 2.6 | 1.2 | 2 | 3 | 0.5 | 2.5 | 0.3 | 6.0 | 5 | PnB | PnB | 64 | | 20.1 | Sogin | SoE | 33% | 42 | 5.4 | 7 | 21 | 19.9 | 0.7 | 1.5 | 4 | 8 | 7.8 | 0.7 | 12.1 | 243.2 | 1 | SoE | RoC2 | 64 | | 20.1 | Wacousta | Wa | 1% | 94 | 0.9 | 2 | 2 | 0.7 | 1.5 | 0.2 | 2 | 2 | 0.3 | 1.3 | 0.6 | 12.4 | 5 | Wa | Wa | 64 | | 21.7 | Batavia | BbB | 4% | 75 | 2.5 | 4 | 11 | 9.6 | 1.1 | 4.5 | 4 | 9 | 8.4 | 0.9 | 1.4 | 30.4 | 3 | DsC2 | BbB | 64 | | 22.0 | Batavia | BbB | 4% | 76 | 1.5 | 3 | 6 | 5.7 | 0.3 | 0.6 | 3 | 6 | 5.4 | 0.3 | 0.3 | 6.6 | 4 | BbB | PoA | 64 | | 22.6 | Elburn | EfB | 3% | 84 | 1.2 | 3 | 6 | 3.4 | 2.8 | 1.5 | 2 | 4 | 1.7 | 1.9 | 2.6 | 58.8 | 5 | EfB | EfB | 64 | | 23.5 | Plano | PoB | 4% | 146 | 3.4 | 6 | 10 | 8.1 | 1.8 | 3.8 | 5 | 4 | 3.3 | 1.1 | 5.5 | 129.3 | 4 | PoB | PoB | 64 | | 23.5 | Kegonsa | KeB | 2% | 167 | 1.5 | 2 | 2 | 0.8 | 1.4 | 3.5 | 2 | 2 | 0.5 | 1.1 | 0.6 | 14.1 | 3 | KeB | KeB | 64 | | 23.3 | Negorisa | KCD | 2/0 | 107 | 1.5 | | | 1 0.0 | 1.7 | ر.ر | | | 0.5 | 1.1 | 0.0 | 17.1 | J | KCD | KCD | U-7 | | | | 2 | 2017 Pho | sphorus Rep | ort - Low Di | sturbance | Deep Tilla | ige | | | | | | | | | | | | | |-------|-------------|----------------|----------|--------------------|---------------------|---------------------|--------------|----------------------|---------------|-----------------|---|----------------|-----------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | Without | LDDT + Co | over Crop | | | | With LDDT | + Cover C | rop | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Actu
Soil Le | | . Annual
PI | Part. PI | Soluble
PI | Annual P
change per
acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 23.5 | Plano | PnB | 9% | 63 | 4.6 | 5 | 11 | 10.2 | 0.4 | 1.7 | 5 | 9 | 8.5 | 0.3 | 1.8 | 42.3 | 5 | RnC2 | PnB | 64 | | 23.7 | Dodge | DnC2 | 9% | 88 | 5.0 | 5 | 7 | 6.7 | 0.6 | 4.0 | 5 | 4 | 3.5 | 0.5 | 3.3 | 78.2 | 5 | DnC2 | RnB | 64 | | 24.0 | Dresden | DsB | 4% | 66 | 3.5 | 5 | 7 | 5.7 | 1.1 | 4.8 | 4 | 3 | 2.4 | 0.8 | 3.6 | 86.4 | 3 | DsB | VwA | 64 | | 26.7 | Wacousta | Wa | 1% | 47 | 0.2 | 1 | 1 | 0.1 | 0.8 | 4.3 | 1 | 1 | 0.0 | 0.8 | 0.1 | 2.7 | 5 | Wa | Wa | 64 | | 30.6 | Plano | PnB | 4% | 84 | 2.9 | 7 | 3 | 2.1 | 0.6 | 1.0 | 7 | 2 | 1.6 | 0.7 | 0.4 | 12.2 | 5 | PnB | PnB | 64 | | 30.6 | Plano | PnB | 4% | 84 | 2.9 | 7 | 3 | 2.1 | 0.6 | 3.0 | 7 | 2 | 1.6 | 0.7 | 0.4 | 12.2 | 5 | PnB | PnB | 64 | | 31.7 | Plano | PnC2 | 9% | 169 | 5.6 | 9 | 12 | 10.5 | 1.4 | 2.9 | 8 | 9 | 7.9 | 1.3 | 2.7 | 85.6 | 5 | PnC2 | PnC2 | 64 | | 31.7 | Plano | PnC2 | 9% | 169 | 5.6 | 9 | 12 | 10.5 | 1.4 | 2.0 | 8 | 9 | 7.9 | 1.3 | 2.7 | 85.6 | 5 | PnC2 | PnC2 | 64 | | 31.9 | Troxel | TrB | 2% | 86 | 1.2 | 3 | 4 | 3.0 | 1.2 | 0.7 | 3 | 2 | 1.0 | 1.0 | 2.2 | 70.2 | 5 | TrB | TrB | 64 | | 31.9 | Troxel | TrB | 2% | 86 | 1.2 | 3 | 4 | 3.0 | 1.2 | 2.7 | 3 | 2 | 1.0 | 1.0 | 2.2 | 70.2 | 5 | TrB | TrB | 64 | | 36.6 | St Charles | ScB | 9% | 114 | 1.7 | 2 | 4 | 3.2 | 0.3 | 1.6 | 1 | 1 | 0.6 | 0.4 | 2.5 | 91.5 | 5 | ScB | ScB | 64 | | 46.4 | Kegonsa | KeB | 4% | 223 | 4.0 | 3 | 3 | 1.8 | 1.4 | 2.6 | 2 | 2 | 0.5 | 1.7 | 1.0 | 46.4 | 3 | KeB | KeB | 64 | | 65.0 | Ringwood | RnC2 | 9% | 39 | 1.1 | 1 | 2 | 1.1 | 0.5 | 2.5 | 1 | 1 | 0.9 | 0.4 | 0.3 | 19.5 | 5 | RnC2 | RnC2 | 64 | | 955.8 | Total Acres | | 52 | Total
Fields | | 62
71.5
acres | | 64
884.3
acres | | | | | | | Average
Change in P
Loss | 2.2 | Medium
Change in P
Loss | 1.7 | Total Lbs P | 1,980.7 | | | | 2017 P | hosphor | rus Report - L | ow Distur | bance M | anure Inj | ection | | | | | | | | | | | | | |-------|------------|----------------|---------|--------------------|------------------------|--------------|--------------|----------|---------------|------------------------|--------------|--------------|----------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | Wi | thout LD | MI | | | | With LD! | MI | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
Pl | Part. PI | Soluble
PI | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Annual P
change
per acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 1.0 | Plano | PnC2 | 9% | 31 | 1.9 | 3 | 4 | 3.4 | 1.0 | 1.9 | 2 | 3 | 2.7 | 0.4 | 1.3 | 1.3 | 5 | KdC2 | KdC2 | 66 | | 1.1 | Hayfield | HaA | 2% | 89 | 1.1 | 1 | 2 | 1.6 | 0.8 | 1.1 | 1 | 1 | 1.0 | 0.1 | 1.3 | 1.4 | 5 | KdC2 | KdC2 | 66 | | 1.2 | Ringwood | RnB | 4% | 97 | 1.3 | 2 | 2 | 1.1 | 0.7 | 1.3 | 1 | 1 | 0.7 | 0.3 | 0.8 | 1.0 | 5 | VrB | VrB | 66 | | 1.4 | Dresden | DsB | 4% | 69 | 2.9 | 6 | 10 | 8.8 | 1.1 | 2.7 | 6 | 9 | 6.9 | 1.7 | 1.3 | 1.8 | 5 | DnC2 | DnC2 | 66 | | 3.0 | Batavia | BbB | 4% | 55 | 1.5 | 2 | 3 | 2.8 | 0.5 | 1.2 | 2 | 1 | 0.9 | 0.6 | 1.8 | 5.4 | 5 | TrB | TrB | 65 | | 3.2 | Batavia | BbB | 4% | 150 | 1.8 | 3 | 7 | 6.0 | 0.7 | 1.4 | 2 | 4 | 3.1 | 0.9 | 2.7 | 8.6 | 2 | RoD2 | RnC2 | 64 | | 4.0 | Dodge | DnB | 4% | 76 | 1.3 | 3 | 5 | 3.7 | 1.2 | 1.3 | 3 | 4 | 2.8 | 1.6 | 0.5 | 2.0 | 5 | RnC2 | RnB | 64 | | 4.0 | Plano | PnB | 4% | 32 | 0.7 | 3 | 2 | 0.7 | 1.6 | 0.7 | 3 | 2 | 0.9 | 1.0 | 0.4 | 1.6 | 3 | DsC2 | DsC2 | 64 | | 4.2 | Troxel | TrB | 2% | 77 | 1.5 | 3 | 5 | 4.3 | 1.0 | 1.5 | 3 | 5 | 3.9 | 1.3 | 0.1 | 0.4 | 4 | PoB | РоВ | 64 | | 4.2 | Dodge | DnC2 | 9% | 36 | 2.0 | 4 | 6 | 5.8 | 0.7 | 1.8 | 4 | 5 | 4.0 | 1.3 | 1.2 | 5.0 | 4 | BbB | BbA | 64 | | 4.3 | St Charles | ScB | 9% | 24 | 1.9 | 4 | 5 | 3.9 | 0.9 | 1.8 | 4 | 5 | 3.5 | 1.1 | 0.2 | 0.9 | 4 | РоВ | PnA | 64 | | 5.0 | Kidder | KdC2 | 9% | 75 | 2.3 | 4 | 3 | 2.8 | 0.5 | 1.9 | 4 | 2 | 1.1 | 0.6 | 1.6 | 8.0 | 5 | RaA | RaA | 64 | | 5.1 | Griswold | GwC | 8% | 23 | 0.5 | 1 | 1 | 0.9 | 0.6 | 0.4 | 1 | 1 | 0.4 | 0.7 | 0.4 | 2.0 | 5 | Ot | Ot | 64 | | 5.5 | Elburn | EgA | 4% | 107 | 1.0 | 1 | 1 | 0.9 | 0.3 | 1.1 | 1 | 1 | 1.2 | 0.2 | -0.2 | -1.1 | 5 | RaA | RaA | 64 | | 5.6 | Griswold | GrD2 | 16% | 11 | 1.0 | 1 | 1 | 0.8 | 0.3 | 0.9 | 1 | 1 | 0.4 | 0.6 | 0.1 | 0.6 | 5 | PnB | PnB | 64 | | 5.7 | Dodge | DnC2 | 9% | 74 | 0.9 | 1 | 1 | 1.0 | 0.4 | 0.8 | 1 | 1 | 0.3 | 0.8 | 0.3 | 1.7 | 5 | PnB | PnB | 64 | | 6.0 | Ringwood | RnC2 | 16% | 46 | 1.5 | 2 | 3 | 2.3 | 0.6 | 0.7 | 1 | 2 | 1.2 | 0.6 | 1.1 | 6.6 | 5 | DnB | VrB | 64 | | 6.2 | Dodge | DnC2 | 9% | 48 | 0.5 | 1 | 1 | 0.4 | 0.3 | 0.2 | 1 | 0 | 0.1 | 0.3 | 0.3 | 1.9 | 5 | PnB | PnB | 64 | | 6.4 | Ringwood | RnB | 2% | 153 | 0.6 | 1 | 1 | 0.8 | 0.4 | 0.2 | 1 | 1 | 0.3 | 0.5 | 0.4 | 2.6 | 5 | HuB | HuB | 64 | | 6.4 | Kidder | KrE2 | 28% | 59 | 1.3 | 1 | 1 | 1.0 | 0.2 | 1.0 | 1 | 1 | 0.5 | 0.2 | 0.5 | 3.2 | 5 | RnB | RnB | 64 | | 6.5 | Ringwood | RnB | 4% | 86 | 0.7 | 1 | 2 | 1.1 | 0.6 | 0.5 | 1 | 1 | 0.3 | 0.6 | 0.8 | 5.2 | 5 | RnB | RnB | 64 | | 6.6 | Whalan | WxC2 | 9% | 45 | 2.8 | 5 | 10 | 8.8 | 0.7 | 2.4 | 4 | 5 | 3.9 | 0.6 | 5.0 | 33.0 | 3 | DsC2 | BbB | 64 | | 6.7 | Plano | PnB | 4% | 86 | 2.0 | 3 | 7 | 6.0 | 0.5 | 1.8 | 3 | 4 | 3.6 | 0.3 | 2.6 | 17.4 | 2 | RoD2 | RoC2 | 64 | | 7.0 | Plano | PnB | 4% | 36 | 3.2 | 6 | 10 | 8.6 | 0.9 | 3.2 | 6 | 7 | 6.6 | 0.8 | 2.1 | 14.7 | 4 | BbB | BbB | 64 | | 7.1 | Dresden | DsC2 | 9% | 32 | 4.5 | 7 | 11 | 10.3 | 0.7 | 4.4 | 7 | 8 | 7.6 | 0.7 | 2.7 | 19.2 | 5 | DnB | DnB | 64 | | 7.2 | Boyer | BoC2 | 9% | 47 | 3.0 | 7 | 12 | 11.3 | 0.9 | 2.9 | 6 | 10 | 8.7 | 1.1 | 2.4 | 17.3 | 5 | GsB | RaA | 64 | | 7.3 | Plano | PnC2 | 9% | 115 | 2.3 | 4 | 6 | 5.2 | 0.5 | 2.3 | 4 | 4 | 4.1 | 0.4 | 1.2 | 8.8 | 5 | DnB | DnB | 64 | | 7.4 | Plano | PnB | 4% | 119 | 2.0 | 4 | 4 | 3.3 | 0.4 | 1.9 | 3 | 3 | 2.2 | 0.5 | 1.0 | 7.4 | 5 | RnC2 | RnC2 | 64 | | 7.4 | Plano | PnB | 4% | 119 | 1.9 | 3 | 3 | 2.5 | 0.4 | 1.9 | 3 | 3 | 2.1 | 0.5 | 0.3 | 2.2 | 5 | TrB | TrB | 64 | | 7.5 | Kidder | KdD2 | 16% | 56 | 1.8 | 3 | 5 | 4.2 | 0.5 | 1.8 | 3 | 4 | 3.2 | 0.4 | 1.1 | 8.3 | 5 | GwC | TrB | 64 | | 7.6 | McHenry | MdC2 | 9% | 58 | 1.2 | 2 | 2 | 1.5 | 0.4 | 1.2 | 2 | 1 | 1.2 | 0.2 | 0.5 | 3.8 | 5 | GwC | GwC | 64 | | 7.6 | Plano | PnC2 | 9% | 86 | 3.0 | 5 | 5 | 4.6 | 0.6 | 3.0 | 5 | 4 | 3.5 | 0.7 | 1.0 | 7.6 | 5 | TrB | Ot | 64 | | 7.9 | Griswold | GwD2 | 16% | 27 | 3.4 | 4 | 5 | 4.9 | 0.4 | 3.2 | 4 | 3 | 2.7 | 0.3 | 2.3 | 18.2 | 5 | RnC2 | RnB | 64 | | 8.0 | Grays | GsB | 4% | 146 | 1.5 | 3 | 2 | 1.7 | 0.3 | 1.4 | 3 | 1 | 1.0 | 0.2 | 0.8 | 6.4 | 5 | GwC | GwC | 64 | | | | 2017 P | hosphor | rus Report - L | ow Distur | bance M | anure Inj | ection | | | | | | | | | | | | | |-------|------------|----------------|---------|--------------------|------------------------|--------------|--------------|----------|---------------|------------------------|--------------|--------------|----------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | Wi | thout LD | MI | | | | With LDI | ΜI | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
Pl | Part. PI | Soluble
PI | Actual
Soil
Loss | Rotat.
PI | Annual
Pl | Part. PI | Soluble
PI | Annual P
change
per acre | Annual P
change for
field | Tolerable Soil
Loss for
the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 8.0 | Dodge | DnC2 | 9% | 50 | 3.9 | 7 | 8 | 7.2 | 0.9 | 3.9 | 6 | 6 | 5.4 | 0.8 | 1.9 | 15.2 | 5 | PnB | PnB | 64 | | 8.1 | Griswold | GwC | 8% | 103 | 3.0 | 6 | 6 | 5.5 | 0.7 | 3.0 | 6 | 5 | 4.2 | 0.8 | 1.2 | 9.7 | 5 | TrB | RaA | 64 | | 8.1 | McHenry | MdC2 | 9% | 89 | 2.2 | 6 | 6 | 4.8 | 0.9 | 2.1 | 6 | 5 | 3.5 | 1.1 | 1.1 | 8.9 | 5 | RnC2 | PnB | 64 | | 8.1 | Griswold | GwD2 | 16% | 21 | 6.8 | 9 | 14 | 13.2 | 0.4 | 2.9 | 4 | 8 | 8.0 | 0.3 | 5.3 | 42.9 | 1 | SoE | RoC2 | 64 | | 8.1 | Plano | PoC2 | 9% | 26 | 4.8 | 7 | 8 | 7.6 | 0.3 | 4.6 | 6 | 6 | 5.4 | 0.2 | 2.3 | 18.6 | 5 | SmD2 | Dnc2 | 64 | | 8.2 | Dodge | DnC2 | 8% | 136 | 1.5 | 3 | 4 | 3.4 | 0.8 | 1.5 | 3 | 3 | 2.3 | 0.7 | 1.2 | 9.8 | 5 | GwC | RnB | 64 | | 8.2 | Ringwood | RdC2 | 9% | 53 | 3.0 | 3 | 3 | 3.2 | 0.2 | 2.9 | 3 | 2 | 2.3 | 0.1 | 1.0 | 8.2 | 5 | KdD2 | KdD2 | 64 | | 8.4 | Dodge | DnC2 | 9% | 50 | 0.9 | 3 | 2 | 1.2 | 0.9 | 0.9 | 3 | 2 | 0.9 | 0.8 | 0.4 | 3.4 | 5 | TrB | TrB | 64 | | 9.0 | Ringwood | RnC2 | 9% | 107 | 1.2 | 2 | 3 | 2.3 | 0.3 | 0.6 | 1 | 1 | 0.8 | 0.3 | 1.5 | 13.5 | 2 | WxC2 | WxB | 64 | | 9.1 | Dresden | DrD2 | 16% | 47 | 2.3 | 5 | 5 | 3.8 | 0.9 | 2.2 | 4 | 3 | 2.6 | 0.6 | 1.5 | 13.7 | 4 | GwD2 | RnC2 | 64 | | 9.2 | Ringwood | RnC2 | 9% | 54 | 2.3 | 4 | 5 | 4.9 | 0.5 | 1.0 | 2 | 2 | 1.6 | 0.4 | 3.4 | 31.3 | 2 | WxD2 | WxD2 | 64 | | 9.3 | Ringwood | RdB2 | 4% | 23 | 2.9 | 4 | 6 | 5.6 | 0.7 | 3.0 | 4 | 5 | 4.1 | 0.6 | 1.6 | 14.9 | 3 | DsB | VwA | 64 | | 9.4 | Boyer | BoC2 | 9% | 105 | 4.4 | 5 | 9 | 8.1 | 0.5 | 4.2 | 5 | 5 | 4.4 | 0.3 | 3.9 | 36.7 | 3 | DrD2 | KeB | 64 | | 9.5 | Plano | PnB | 4% | 104 | 0.7 | 1 | 1 | 0.9 | 0.5 | 0.7 | 1 | 1 | 0.7 | 0.4 | 0.3 | 2.9 | 4 | BbB | BbB | 64 | | 9.7 | Rockton | RoD2 | 10% | 60 | 1.9 | 2 | 2 | 1.8 | 0.2 | 1.9 | 2 | 2 | 1.3 | 0.2 | 0.5 | 4.9 | 3 | DrD2 | DrD2 | 64 | | 9.8 | Griswold | GrC2 | 8% | 17 | 0.6 | 1 | 1 | 0.8 | 0.6 | 0.6 | 1 | 1 | 0.6 | 0.4 | 0.4 | 3.9 | 4 | EgA | RaA | 64 | | 9.8 | Ringwood | RnC2 | 9% | 55 | 1.8 | 2 | 3 | 2.5 | 0.4 | 1.8 | 2 | 2 | 2.0 | 0.3 | 0.6 | 5.9 | 2 | WxD2 | TrB | 64 | | 9.9 | Plano | PnB | 4% | 56 | 1.7 | 3 | 2 | 1.8 | 0.4 | 1.6 | 3 | 2 | 1.5 | 0.5 | 0.2 | 2.0 | 5 | DnC2 | DnB | 64 | | 10.0 | Kidder | KdC2 | 9% | 122 | 2.2 | 4 | 9 | 8.1 | 0.8 | 2.2 | 4 | 9 | 7.9 | 0.7 | 0.3 | 3.0 | 3 | DsC2 | BbB | 64 | | 10.0 | Dodge | DnC2 | 9% | 109 | 1.5 | 1 | 1 | 0.8 | 0.0 | 1.5 | 1 | 1 | 0.7 | 0.0 | 0.1 | 1.0 | 3 | BoC2 | SeB | 64 | | 10.0 | Dodge | DnB | 4% | 49 | 3.2 | 5 | 15 | 14.4 | 0.8 | 3.4 | 5 | 15 | 14.5 | 0.7 | 0.0 | 0.0 | 5 | MdD2 | MdD2 | 64 | | 10.0 | Troxel | TrB | 2% | 63 | 1.5 | 3 | 4 | 2.9 | 1.2 | 1.5 | 3 | 4 | 2.8 | 0.9 | 0.4 | 4.0 | 5 | ScB | TrB | 64 | | 10.0 | McHenry | MdC2 | 9% | 14 | 3.8 | 5 | 4 | 3.3 | 0.5 | 3.9 | 5 | 4 | 3.2 | 0.5 | 0.1 | 1.0 | 5 | MdC2 | DnB | 64 | | 10.0 | Whalan | WxC2 | 8% | 81 | 3.4 | 4 | 3 | 2.5 | 0.4 | 3.0 | 4 | 1 | 1.0 | 0.4 | 1.5 | 15.0 | 5 | MdD2 | DnC2 | 64 | | 10.0 | Plano | PnB | 2% | 92 | 2.2 | 3 | 2 | 1.4 | 0.3 | 2.3 | 2 | 2 | 1.4 | 0.3 | 0.0 | 0.0 | 5 | MdC2 | DnB | 64 | | 10.1 | Ringwood | RnC2 | 9% | 39 | 1.1 | 2 | 2 | 1.5 | 0.6 | 1.1 | 2 | 2 | 1.5 | 0.6 | 0.0 | 0.0 | 5 | MdD2 | DnC2 | 64 | | 10.2 | Dodge | DnC2 | 9% | 44 | 2.1 | 3 | 2 | 1.2 | 0.5 | 2.1 | 3 | 2 | 1.1 | 0.5 | 0.1 | 1.0 | 3 | DsC2 | BbB | 64 | | 10.2 | Ringwood | RdC2 | 9% | 12 | 2.4 | 3 | 2 | 1.6 | 0.4 | 2.3 | 2 | 2 | 1.4 | 0.3 | 0.3 | 3.1 | 5 | DnC2 | DnB | 64 | | 10.2 | Kidder | KrD2 | 15% | 59 | 4.1 | 5 | 4 | 3.8 | 0.3 | 4.1 | 5 | 3 | 2.6 | 0.1 | 1.4 | 14.3 | 5 | DnC2 | MdC2 | 64 | | 10.3 | St Charles | ScD2 | 16% | 58 | 3.1 | 3 | 4 | 3.4 | 0.2 | 3.1 | 3 | 3 | 2.5 | 0.2 | 0.9 | 9.3 | 5 | MdC2 | ScB | 64 | | 10.4 | Ringwood | RdB2 | 4% | 24 | 3.0 | 3 | 3 | 3.1 | 0.3 | 3.2 | 3 | 3 | 2.3 | 0.3 | 0.8 | 8.3 | 5 | MdC2 | BbB | 64 | | 10.6 | Dresden | DsC2 | 9% | 42 | 1.2 | 2 | 2 | 1.2 | 0.5 | 1.3 | 2 | 2 | 1.2 | 0.5 | 0.0 | 0.0 | 3 | BoC2 | BoC2 | 64 | | 10.7 | McHenry | MdC2 | 9% | 48 | 1.7 | 2 | 1 | 0.9 | 0.1 | 0.8 | 1 | 1 | 0.4 | 0.2 | 0.4 | 4.3 | 2 | WxD2 | GwD2 | 64 | | 10.7 | Batavia | BbB | 4% | 82 | 4.6 | 5 | 3 | 2.6 | 0.3 | 3.8 | 4 | 3 | 2.4 | 0.2 | 0.3 | 3.2 | 4 | GwD2 | RnC2 | 64 | | | | 2017 P | hosphor | us Report - L | ow Distur | bance M | anure Inj | jection | | | | | | | | | | | | | | |-------|-----------|----------------|---------|--------------------|------------------------|--------------|--------------|----------|---------------|------------------------|--------------|--------------|----------|---------------|----|----------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | Wi | thout LD | MI | | | | With LDI | MI | | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
Pl | Part. PI | Soluble
PI | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | ch | nual P
nange
er acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 11.0 | Whalan | WxD2 | 16% | 31 | 2.0 | 2 | 3 | 2.6 | 0.1 | 1.9 | 2 | 2 | 2.1 | 0.0 | | 0.6 | 6.6 | 5 | KrD2 | RnC2 | 64 | | 11.0 | Ringwood | RnC2 | 9% | 55 | 1.3 | 2 | 1 | 0.9 | 0.1 | 1.3 | 1 | 1 | 0.7 | 0.1 | | 0.2 | 2.2 | 5 | PnC2 | PnC2 | 64 | | 11.0 | Ringwood | RnC2 | 9% | 19 | 3.1 | 4 | 7 | 6.4 | 0.2 | 2.1 | 3 | 4 | 4.0 | 0.2 | | 2.4 | 26.4 | 4 | GwD2 | RnC2 | 64 | | 11.1 | Dresden | DsC2 | 8% | 46 | 3.2 | 4 | 6 | 5.3 | 0.4 | 2.9 | 4 | 5 | 4.4 | 0.6 | | 0.7 | 7.8 | 5 | RnC2 | PnB | 64 | | 11.1 | Griswold | GrC2 | 8% | 17 | 1.7 | 2 | 4 | 3.8 | 0.3 | 1.5 | 2 | 3 | 3.1 | 0.2 | | 0.8 | 8.9 | 4 | GwD2 | RnC2 | 64 | | 11.5 | Warsaw | WrC2 | 9% | 105 | 12.4 | 16 | 15 | 14.4 | 0.8 | 9.5 | 13 | 13 | 11.6 | 1.4 | | 2.2 | 25.3 | 5 | RnC2 | PnB | 64 | | 11.5 | Plano | PnB | 9% | 13 | 4.3 | 5 | 4 | 2.8 | 0.9 | 4.3 | 5 | 3 | 2.4 | 0.6 | | 0.7 | 8.1 | 2 | RoC2 | RoC2 | 64 | | 11.5 | McHenry | MdC2 | 9% | 61 | 2.4 | 4 | 5 | 4.5 | 0.6 | 2.4 | 4 | 4 | 4.0 | 0.5 | | 0.6 | 6.9 | 5 | PnB | PnB | 64 | | 11.5 | Rockton | RoC2 | 9% | 105 | 3.7 | 5 | 6 | 5.9 | 0.5 | 2.0 | 2 | 2 | 1.9 | 0.4 | | 4.1 | 47.2 | 2 | RoC2 | RoC2 | 64 | | 11.5 | Griswold | GwD2 | 15% | 53 | 2.1 | 3 | 5 | 4.1 | 0.6 | 2.2 | 3 | 4 | 3.8 | 0.4 | | 0.5 | 5.8 | 3 | DsB | TrB | 64 | | 11.8 | McHenry | MdD2 | 16% | 59 | 0.6 | 1 | 1 | 0.5 | 0.5 | 0.2 | 1 | 1 | 0.2 | 0.4 | | 0.4 | 4.7 | 2 | RoC2 | RoC2 | 64 | | 12.0 | Troxel | TrB | 4% | 128 | 0.8 | 2 | 2 | 1.3 | 0.9 | 1.0 | 2 | 2 | 1.5 | 0.7 | | 0.0 | 0.0 | 2 | WrC2 | RoC2 | 64 | | 12.0 | Virgil | VrB | 4% | 30 | 0.4 | 1 | 1 | 0.4 | 0.7 | 0.3 | 1 | 1 | 0.2 | 0.4 | | 0.5 | 6.0 | 5 | RnC2 | PnB | 64 | | 12.0 | Griswold | GwD2 | 16% | 23 | 1.7 | 2 | 1 | 0.9 | 0.3 | 1.7 | 2 | 1 | 0.8 | 0.2 | | 0.2 | 2.4 | 5 | RdB2 | RdB2 | 64 | | 12.0 | Plano | PoB | 4% | 210 | 1.2 | 1 | 1 | 0.8 | 0.2 | 1.2 | 1 | 1 | 0.7 | 0.1 | | 0.2 | 2.4 | 5 | RdB2 | RdB2 | 64 | | 12.1 | Rockton | RoC2 | 9% | 58 | 3.5 | 4 | 3 | 2.5 | 0.2 | 2.7 | 3 | 1 | 1.3 | 0.1 | | 1.3 | 15.7 | 5 | RdC2 | RdC2 | 64 | | 12.2 | Griswold | GwD2 | 15% | 25 | 2.2 | 3 | 2 | 1.8 | 0.2 | 2.2 | 3 | 2 | 1.5 | 0.1 | | 0.4 | 4.9 | 5 | RdC2 | PnB | 64 | | 12.3 | Virgil | VrB | 4% | 56 | 3.6 | 5 | 3 | 2.2 | 0.3 | 3.4 | 4 | 2 | 1.8 | 0.2 | | 0.5 | 6.2 | 4 | GrC2 | PnB | 64 | | 12.3 | Elburn | EgA | 2% | 129 | 4.3 | 5 | 3 | 3.1 | 0.2 | 4.2 | 5 | 3 | 2.6 | 0.2 | | 0.5 | 6.2 | 4 | GrC2 | GrC2 | 64 | | 12.4 | Ringwood | RnC2 | 9% | 36 | 3.2 | 3 | 2 | 1.9 | 0.2 | 3.0 | 3 | 2 | 1.4 | 0.1 | | 0.6 | 7.4 | 5 | RdC2 | RdC2 | 64 | | 12.5 | Dodge | DnC2 | 9% | 41 | 2.0 | 3 | 1 | 1.2 | 0.2 | 2.0 | 3 | 1 | 1.1 | 0.1 | | 0.2 | 2.5 | 5 | PnB | PnB | 64 | | 12.5 | Plano | PnB | 4% | 79 | 4.4 | 6 | 8 | 7.4 | 0.9 | 4.4 | 6 | 7 | 6.4 | 0.9 | | 1.0 | 12.5 | 5 | PnB | PnB | 64 | | 12.6 | Batavia | BbB | 4% | 85 | 4.8 | 5 | 3 | 3.1 | 0.2 | 4.6 | 5 | 3 | 2.7 | 0.2 | | 0.4 | 5.0 | 5 | PnC2 | RnC2 | 64 | | 12.6 | Whalan | WxD2 | 16% | 66 | 3.6 | 8 | 10 | 7.7 | 2.5 | 3.6 | 8 | 10 | 6.9 | 2.7 | | 0.6 | 7.6 | 5 | VrB | VrB | 64 | | 12.6 | Ringwood | RdC2 | 9% | 9 | 4.7 | 5 | 3 | 2.3 | 0.3 | 4.7 | 5 | 2 | 2.2 | 0.2 | | 0.2 | 2.5 | 5 | RnC2 | RnC2 | 64 | | 12.6 | McHenry | MdD2 | 16% | 70 | 4.2 | 6 | 9 | 7.9 | 1.0 | 4.2 | 5 | 8 | 6.9 | 0.9 | | 1.1 | 13.9 | 5 | PnB | VrB | 64 | | 13.0 | Ringwood | RnC2 | 9% | 126 | 2.9 | 3 | 3 | 2.9 | 0.2 | 2.4 | 2 | 2 | 2.0 | 0.2 | | 0.9 | 11.7 | 5 | RnC2 | PnB | 64 | | 13.0 | Ringwood | RnC2 | 9% | 126 | 3.4 | 4 | 7 | 6.0 | 0.6 | 3.4 | 4 | 6 | 5.1 | 0.5 | | 1.0 | 13.0 | 5 | PnB | PnB | 64 | | 13.0 | Warsaw | WrC2 | 9% | 70 | 4.7 | 6 | 4 | 3.6 | 0.2 | 4.4 | 5 | 3 | 2.4 | 0.2 | | 1.2 | 15.6 | 5 | PnC2 | PnB | 64 | | 13.2 | Rockton | RoC2 | 9% | 58 | 5.6 | 2 | 2 | 1.2 | 0.3 | 5.2 | 2 | 1 | 0.8 | 0.4 | | 0.3 | 4.0 | 5 | DnC2 | PnB | 64 | | 13.2 | Rockton | RoC2 | 9% | 58 | 2.8 | 3 | 2 | 2.4 | 0.1 | 2.7 | 3 | 2 | 2.0 | 0.1 | | 0.4 | 5.3 | 5 | MdC2 | MdC2 | 64 | | 13.3 | McHenry | MdD2 | 16% | 85 | 4.1 | 2 | 1 | 0.5 | 0.2 | 3.9 | 2 | 1 | 0.4 | 0.2 | | 0.1 | 1.3 | 5 | DnC2 | DnC2 | 64 | | 13.4 | Seaton | SmD2 | 16% | 51 | 3.5 | 4 | 4 | 4.1 | 0.1 | 3.4 | 4 | 3 | 3.4 | 0.1 | | 0.7 | 9.4 | 5 | GrD2 | RdC2 | 64 | | 13.6 | Rockton | RoC2 | 9% | 64 | 6.4 | 7 | 4 | 3.7 | 0.2 | 6.2 | 7 | 2 | 2.2 | 0.2 | | 1.5 | 20.4 | 5 | DnC2 | ScB | 64 | | | | 2017 P | hosphor | us Report - L | ow Distur | bance M | anure Inj | jection | | | | | | | | | | | | | | | |-------|------------|----------------|---------|--------------------|------------------------|--------------|--------------|----------|---------------|------------------------|--------------|--------------|----------|---------------|-----|--------------------------|---------------------------------|---
---|-----------------------|--------------------------|--| | | | | | | | Wi | thout LD | МІ | | | | With LDI | ΛI | | | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
Pl | Part. PI | Soluble
Pl | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | ch | nual P
ange
r acre | Annual P
change for
field | | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 13.6 | Rockton | RoC2 | 9% | 64 | 2.7 | 3 | 3 | 3.0 | 0.2 | 2.6 | 3 | 3 | 2.2 | 0.3 | | 0.7 | 9.5 | | 5 | RdC2 | PnB | 64 | | 13.7 | Elburn | EgA | 2% | 129 | 3.1 | 4 | 3 | 3.0 | 0.1 | 3.0 | 4 | 3 | 2.5 | 0.1 | (| 0.5 | 6.9 | | 5 | MdC2 | DnC2 | 64 | | 13.9 | McHenry | MdD2 | 16% | 113 | 2.0 | 2 | 2 | 2.1 | 0.2 | 1.9 | 2 | 2 | 1.8 | 0.1 | (| 0.4 | 5.6 | | 5 | RdC2 | PnB | 64 | | 13.9 | Plano | PoB | 4% | 113 | 1.8 | 3 | 2 | 1.9 | 0.1 | 1.8 | 3 | 2 | 1.6 | 0.1 | (| 0.3 | 4.2 | | 5 | RdC2 | RdC2 | 64 | | 14.0 | Griswold | GwC | 8% | 54 | 5.9 | 6 | 7 | 6.1 | 0.6 | 5.6 | 6 | 5 | 3.8 | 0.8 | : | 2.1 | 29.4 | | 5 | GwC | PnB | 64 | | 14.0 | Troxel | TrB | 2% | 146 | 3.4 | 1 | 1 | 0.7 | 0.2 | 3.3 | 1 | 1 | 0.5 | 0.4 | (| 0.0 | 0.0 | | 5 | MdC2 | MdC2 | 64 | | 14.0 | Plano | PnB | 4% | 110 | 4.8 | 6 | 5 | 4.2 | 0.4 | 4.4 | 5 | 2 | 1.6 | 0.5 | | 2.5 | 35.0 | | 5 | RnB | WaA | 64 | | 14.0 | Griswold | GwD2 | 15% | 48 | 6.0 | 12 | 16 | 15.7 | 0.7 | 5.7 | 12 | 13 | 12.4 | 1.1 | | 2.9 | 40.6 | | 5 | PnC2 | RnC2 | 64 | | 14.0 | Plano | PnC2 | 9% | 98 | 5.8 | 3 | 2 | 1.8 | 0.5 | 5.2 | 2 | 1 | 0.6 | 0.7 | - : | 1.0 | 14.0 | ĺ | 5 | PnB | RnB | 64 | | 14.0 | Elburn | EfB | 3% | 60 | 5.9 | 7 | 11 | 10.6 | 0.5 | 4.0 | 5 | 4 | 3.4 | 0.6 | | 7.1 | 99.4 | | 5 | PnC2 | РоВ | 64 | | 14.1 | Ringwood | RnC2 | 9% | 57 | 2.1 | 3 | 4 | 3.0 | 0.8 | 1.9 | 3 | 2 | 1.4 | 1.0 | | 1.4 | 19.7 | | 5 | RnB | EfB | 64 | | 14.4 | McHenry | MdC2 | 9% | 27 | 5.9 | 7 | 9 | 8.3 | 0.6 | 5.7 | 7 | 7 | 6.3 | 1.0 | | 1.6 | 23.0 | | 4 | РоВ | TrB | 64 | | 14.5 | Plano | PnC2 | 9% | 132 | 4.7 | 2 | 4 | 3.1 | 0.5 | 4.3 | 2 | 3 | 2.2 | 0.7 | (| 0.7 | 10.2 | | 5 | PnC2 | PnB | 64 | | 14.7 | Plano | PnB | 4% | 65 | 4.5 | 7 | 11 | 10.3 | 1.1 | 4.3 | 7 | 10 | 8.3 | 1.8 | | 1.3 | 19.1 | | 4 | PoB | PoB | 64 | | 14.8 | Huntsville | HuB | 4% | 59 | 9.3 | 2 | 3 | 2.9 | 0.4 | 8.7 | 2 | 3 | 2.1 | 0.4 | (| 0.8 | 12.4 | | 5 | PnC2 | PnC2 | 64 | | 15.1 | Boyer | BoC2 | 9% | 76 | 4.9 | 5 | 5 | 5.0 | 0.4 | 4.7 | 5 | 3 | 2.9 | 0.6 | | 1.9 | 28.7 | | 4 | РоВ | РоВ | 64 | | 15.2 | Plano | PnB | 4% | 89 | 3.0 | 3 | 3 | 2.7 | 0.3 | 2.8 | 3 | 2 | 1.6 | 0.3 | | 1.1 | 16.7 | | 4 | GwD2 | RnC2 | 64 | | 15.2 | Dodge | DnC2 | 9% | 51 | 3.5 | 3 | 6 | 5.7 | 0.6 | 3.3 | 3 | 5 | 4.6 | 0.7 | | 1.0 | 15.2 | | 5 | GwC | PnB | 64 | | 15.2 | Ringwood | RnB | 4% | 16 | 12.5 | 13 | 13 | 12.1 | 0.8 | 11.6 | 10 | 10 | 9.9 | 0.6 | | 2.4 | 36.5 | | 2 | RoC2 | RoC2 | 64 | | 15.3 | Ringwood | RnC2 | 9% | 202 | 1.1 | 1 | 1 | 0.6 | 0.2 | 0.9 | 1 | 1 | 0.6 | 0.2 | (| 0.0 | 0.0 | ľ | 5 | MdD2 | MdD2 | 64 | | 15.4 | Kidder | KdC2 | 9% | 44 | 4.5 | 4 | 3 | 2.3 | 0.7 | 4.0 | 4 | 3 | 1.4 | 0.7 | (| 0.9 | 13.9 | ľ | 5 | DnC2 | DnC2 | 64 | | 15.4 | Griswold | GwC | 8% | 20 | 3.7 | 4 | 4 | 3.9 | 0.3 | 3.6 | 3 | 4 | 3.5 | 0.3 | (| 0.4 | 6.2 | | 5 | MdD2 | DnC2 | 64 | | 15.5 | Ringwood | RnC2 | 9% | 31 | 5.9 | 5 | 8 | 7.8 | 0.3 | 4.5 | 4 | 3 | 2.3 | 0.2 | Į. | 5.6 | 86.8 | | 5 | DnC2 | DnC2 | 64 | | 15.6 | Batavia | BbB | 4% | 64 | 5.9 | 6 | 11 | 10.8 | 0.6 | 4.5 | 5 | 3 | 2.8 | 0.4 | | 8.2 | 127.9 | | 5 | DnC2 | KdC2 | 64 | | 15.7 | Virgil | VrB | 3% | 189 | 2.1 | 2 | 2 | 2.4 | 0.0 | 1.8 | 1 | 1 | 0.9 | 0.0 | : | 1.5 | 23.6 | | 5 | KrD2 | RnC2 | 64 | | 16.0 | Griswold | GwD2 | 15% | 53 | 1.2 | 1 | 2 | 1.5 | 0.2 | 1.2 | 1 | 1 | 1.3 | 0.1 | (| 0.3 | 4.8 | | 5 | PnB | PnA | 64 | | 16.0 | Plano | PnA | 1% | 66 | 4.8 | 4 | 7 | 6.5 | 0.2 | 4.3 | 4 | 4 | 3.8 | 0.2 | | 2.7 | 43.2 | | 5 | RnC2 | RnC2 | 64 | | 16.3 | Plano | PnC2 | 9% | 44 | 2.2 | 2 | 2 | 1.5 | 0.3 | 1.6 | 2 | 1 | 0.8 | 0.2 | (| 0.8 | 13.0 | | 2 | RoC2 | RnB | 64 | | 16.5 | Griswold | GwC | 8% | 79 | 1.8 | 2 | 2 | 2.2 | 0.2 | 0.7 | 1 | 1 | 0.5 | 0.1 | | 1.8 | 29.7 | | 2 | WxD2 | GwD2 | 64 | | 16.5 | Plano | PnB | 4% | 46 | 2.4 | 2 | 6 | 5.3 | 0.3 | 2.4 | 2 | 5 | 4.7 | 0.2 | (| 0.7 | 11.6 | | 5 | DnB | PnB | 64 | | 16.6 | Hayfield | HaA | 2% | 82 | 1.6 | 2 | 2 | 1.8 | 0.3 | 1.6 | 2 | 2 | 1.6 | 0.2 | (| 0.3 | 5.0 | | 5 | PnB | PnA | 64 | | 16.6 | Dresden | DsC2 | 9% | 31 | 0.5 | 1 | 1 | 0.6 | 0.2 | 0.5 | 1 | 1 | 0.5 | 0.2 | (| 0.1 | 1.7 | | 5 | PnA | PnA | 64 | | 16.7 | Otter | Ot | 1% | 95 | 1.3 | 2 | 3 | 2.6 | 0.5 | 0.9 | 1 | 2 | 1.2 | 0.3 | | 1.6 | 26.7 | | 1 | EdB2 | WrC2 | 64 | | 16.7 | Batavia | BbB | 4% | 117 | 4.7 | 9 | 15 | 14.7 | 0.8 | 4.7 | 9 | 14 | 13.3 | 0.7 | | 1.5 | 25.1 | | 5 | RnC2 | PnB | 64 | | Acres Soil Typ 17.1 Kidder 17.1 Ringwoc 17.3 Kidder 17.3 Griswol 17.5 Plano | Symbol
KrE2 | Slope | Soil Test | Actual | Wi | thout LD | MI | | | | İ | 5 | | | | | | | | | |--|----------------|-------|-----------|--------------|--------------|--------------|------------|---------------|------------------------|--------------|--------------|------------|---------------|--------------------------------|---------------------------------|-------------------|--------|-----------------------|--------------------------|--| | 17.1 Kidder
17.1 Ringwoc
17.3 Kidder
17.3 Griswol | Symbol
KrE2 | Slope | | Actual | | | | | | , | With LD! | √II | | | | | | | | | | 17.1 Ringwood 17.3 Kidder 17.3 Griswol | | | | Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
Pl | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Annual P
change
per acre | Annual P
change for
field | Toleral
Loss f | or the | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 17.3 Kidder
17.3 Griswol | RnC2 | 28% | 60 | 4.3 | 4 | 8 | 7.9 | 0.2 | 4.2 | 4 | 8 | 7.6 | 0.3 | 0.2 | 3.4 | | | PnC2 | РоВ | 64 | | 17.3 Griswol | | 9% | 68 | 3.7 | 6 | 6 | 5.5 | 0.6 | 3.7 | 6 | 5 | 4.8 | 0.5 | 0.8 | 13.7 | . ! | ;
; | PnB | PnB | 64 | | | KrD2 | 15% | 67 | 3.2 | 6 | 4 | 3.3 | 1.1 | 3.1 | 6 | 4 | 2.9 | 1.1 | 0.4 | 6.9 | 3 | 3 | DsB | РоВ | 64 | | 17.5 Plana | I GwC | 9% | 47 | 2.2 | 4 | 6 | 5.3 | 0.6 | 2.2 | 4 | 5 | 4.6 | 0.5 | 0.8 | 13.8 | 3 | } | DsB | TrB | 64 | | 1 1/.5 FIGITO | PnB | 9% | 19 | 4.3 | 4 | 3 | 3.1 | 0.4 | 4.0 | 4 | 3 | 2.9 | 0.4 | 0.2 | 3.5 | į | 5 | KrE2 | DnC2 | 64 | | 17.6 Whaler | WxD2 | 16% | 47 | 0.8 | 2 | 3 | 2.5 | 0.7 | 0.6 | 2 | 2 | 1.1 | 0.7 | 1.4 | 24.6 | | 2 | RoC2 | WrC2 | 64 | | 17.9 Plano | PoB | 4% | 82 | 2.8 | 4 | 7 | 6.6 | 0.7 | 2.1 | 3 | 3 | 2.2 | 0.5 | 4.6 | 82.3 | : | 2 | RoC2 | RoC2 | 64 | | 18.0 Ringwood | d RnC2 | 9% | 41 | 4.7 | 5 | 6 | 5.5 | 0.8 | 4.5 | 5 | 4 | 3.5 | 0.5 | 2.3 | 41.4 | | 5 | DnC2 | RnB | 64 | | 18.2 Griswol | l GwB | 4% | 62 | 2.2 | 3 | 6 | 5.3 | 0.4 | 1.4 | 2 | 2 | 1.7 | 0.3 | 3.7 | 67.3 | | | RoC2 | RoC2 | 64 | | 18.3 Plano | PnC2 | 9% | 77 | 1.3 | 2 | 2 | 1.8 | 0.2 | 1.3 | 2 | 2 | 1.9 | 0.2 | -0.1 | -1.8 | | | RnC2 | TrB | 64 | | 18.4 Dresder | DrD2 | 16% | 60 | 1.4 | 2 | 2 | 1.8 | 0.2 | 1.4 | 2 | 2 | 1.7 | 0.2 | 0.1 | 1.8 | | | RoD2 | RoC2 | 64 | | 18.7 Dresder | DsC2 | 8% | 106 | 3.8 | 4 | 3 | 2.4 | 0.3 | 3.8 | 4 | 2 | 2.2 | 0.2 | 0.3 | 5.6 | | | KrD2 | PnC2 | 64 | | 18.7 Griswol | | 15% | 53 | 1.4 | 2 | 1 | 0.7 | 0.2 | 1.4 | 2 | 1 | 0.7 | 0.2 | 0.0 | 0.0 | | | PnB | PnB | 64 | | 18.8 Kidder | KdD2 | 16% | 26 | 2.2 | 3 | 8 | 7.8 | 0.3 | 1.7 | 2 | 5 | 4.8 | 0.3 | 3.0 | 56.4 | | | ScD2 | PnB | 64 | | 18.9 Plano | PnB | 4% | 117 | 5.2 | 5 | 7 | 6.1 | 0.6 | 4.8 | 5 | 6 | 5.2 | 0.3 | 1.2 | 22.7 | ! | | KrE2 | PnB | 64 | | 19.1 Plano | PnC2 | 9% | 123 | 3.3 | 3 | 2 | 1.8 | 0.3 | 2.4 | 3 | 1 | 0.4 | 0.2 | 1.5 | 28.7 | : | | WxD2 | KdD2 | 64 | | 19.2 Plano | PnV | 4% | 48 | 3.1 | 3 | 5 | 4.9 | 0.4 | 2.8 | 3 | 3 | 2.9 | 0.4 | 2.0 | 38.4 | ! | | KdC2 | KdC2 | 64 | | 19.2 Dodge | DsC2 | 9% | 89 | 3.8 | 4 | 9 | 8.4 | 0.5 | 4.0 | 4 | 9 | 8.4 | 0.4 | 0.1 | 1.9 | ! | | KdD2 | PnC2 | 64 | | 19.3 Ringwood | | 9% | 19 | 4.3 | 5 | 9 | 8.6 | 0.6 | 4.3 | 5 | 9 | 8.1 | 0.5 | 0.6 | 11.6 | ! | | RnC2 | PnB | 64 | | 19.3 Dresder | | 4% | 90 | 5.1 | 7 | 12 | 11.5 | 0.6 | 3.5 | 5 | 3 | 2.6 | 0.5 | 9.0 | 173.7 | ! | | DnC2 | PnC2 | 64 | | 19.4 Rocktor | | 21% | 66 | 3.3 | 4 | 6 | 5.8 | 0.5 | 3.5 | 4 | 6 | 5.4 | 0.4 | 0.5 | 9.7 | ! | | RnC2 | RnC2 | 64 | | 19.5 Griswol | | 8% | 84 | 1.5 | 2 | 3 | 2.2 | 0.4 | 1.4 | 2 | 3 | 2.1 | 0.4 | 0.1 | 2.0 | | | GwD2 | GwD2 | 64 | | 19.5 Dresder | | 9% | 58 | 4.0 | 4 | 8 | 7.0 | 0.5 | 3.0 | 3 | 2 | 1.8 | 0.4 | 5.3 | 103.4 | 4 | | GwD2 | DnB | 64 | | 19.6 Plano | PnB | 4% | 82 | 2.0 | 3 | 4 | 3.3 | 0.9 | 1.8 | 3 | 3 | 2.2 | 0.9 | 1.1 | 21.6 | | | GwC | PnB | 64 | | 20.0 Dresder | | 9% | 130 | 2.5 | 3 | 2 | 1.5 | 0.4 | 2.5 | 3 | 2 | 1.4 | 0.3 | 0.2 | 4.0 | ! | | PnB | PnB | 64 | | 20.0 Ringwood | | 9% | 39 | 1.5 | 2 | 2 | 1.7 | 0.5 | 1.4 | 2 | 2 | 1.2 | 0.5 | 0.5 | 10.0 | | | PnB | PnB | 64 | | 20.1 Sogin
20.3 Batavia | SoE
BbB | 33% | 96 | 3.7 | 6 | 8 | 1.3 | 0.2 | 3.7 | 6 | 7 | 1.2
6.5 | 0.1 | 1.0 | 20.3 | | | PnB | RnB
MdD2 | 64
64 | | | | | | | ļ | | 7.4 | | | | | | | | | | | MdD2 | ļ | 64 | | 20.5 Ringwood | | 9% | 38 | 1.2 | 1 | 9 | 2.2 | 0.3 | 1.2 | 1 | 7 | 2.0 | 0.2 | 0.3 | 6.2 | | | RnC2 | RnC2
PnC2 | 64 | | 20.7 McHenr
20.9 Radford | / MdD2
RaA | 10% | 38
102 | 4.9 | 5 | 6 | 8.1
5.9 | 0.4 | 4.7 | 5
4 | 6 | 6.4
5.8 | 0.3 | 1.8 | 37.3
8.4 | <u> </u> | | PnB
GwC | RnB | 64 | | 20.9 Radiord | | 4% | 28 | 2.4 | 2 | 5 | 4.4 | 0.5 | 2.1 | 2 | 3 | 2.8 | 0.2 | 1.6 | 33.4 | | |
RnC2 | RnC2 | 64 | | 21.2 Dodge | DnC2 | 9% | 30 | 2.4 | 2 | 1 | 1.3 | 0.2 | 2.1 | 2 | 1 | 1.2 | 0.2 | 0.1 | 2.1 | | | RnC2 | PnB | 64 | | 21.4 McHenr | | 14% | 50 | 4.3 | 4 | 3 | 2.4 | 0.1 | 4.3 | 4 | 2 | 2.3 | 0.1 | 0.1 | 4.3 | | | RnC2 | PnB | 64 | | 21.5 Boyer | BoD2 | 16% | 22 | 3.2 | 4 | 11 | 10.6 | 0.5 | 3.4 | 3 | 9 | 9.2 | 0.2 | 1.6 | 34.4 | | | GwC | GwC | 64 | | 22.0 Rockton | RoD2 | 21% | 72 | 3.2 | 4 | 12 | 11.8 | 0.3 | 3.0 | 4 | 9 | 8.6 | 0.3 | 3.2 | 70.4 | | | GwD2 | GwD2 | 64 | | 22.5 Troxel | TrB | 4% | 103 | 3.0 | 4 | 9 | 9.2 | 0.4 | 2.7 | 4 | 5 | 5.0 | 0.4 | 4.3 | 96.8 | | | RoD2 | RoD2 | 64 | | | | 2017 F | hospho | rus Report - | Low Distu | rbance M | lanure Inj | jection | | | | | | | | | | | | | | |-------|-----------|----------------|--------|--------------------|------------------------|--------------|--------------|----------|---------------|-----------------------|--------|--------------|----------|---------------|--------------------------------|---------------------------------|---|---|-----------------------|--------------------------|--| | | | | | | | W | ithout LD | MI | | | · | With LDI | ΜI | | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Actua
Soil
Loss | Rotat. | Annual
PI | Part. PI | Soluble
PI | Annual F
change
per acre | Annual P
change for
field | | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 22.5 | Troxel | TrB | 4% | 103 | 1.8 | 3 | 6 | 5.4 | 0.5 | 1.7 | 3 | 4 | 3.6 | 0.5 | 1.8 | 40.5 | | 5 | Os | Os | 64 | | 22.5 | Radford | RaA | 2% | 130 | 2.2 | 5 | 5 | 4.1 | 1.2 | 2.2 | 5 | 5 | 3.8 | 1.1 | 0.4 | 9.0 | | 5 | RnC2 | RnC2 | 64 | | 22.6 | Elburn | EfB | 3% | 84 | 2.1 | 4 | 6 | 5.8 | 0.6 | 2.1 | 4 | 6 | 5.2 | 0.5 | 0.7 | 15.8 | | 5 | MdD2 | MdD2 | 64 | | 23.3 | Plano | PoB | 4% | 84 | 2.3 | 6 | 6 | 5.1 | 1.3 | 2.1 | 4 | 6 | 4.7 | 1.2 | 0.5 | 11.7 | | 5 | TrB | TrB | 64 | | 23.3 | Ringwood | RnC2 | 9% | 20 | 4.3 | 6 | 5 | 4.1 | 1.6 | 2.7 | 4 | 1 | 0.5 | 0.3 | 4.9 | 114.2 | | 5 | PnC2 | PnC2 | 64 | | 23.5 | Ringwood | RnC2 | 9% | 63 | 2.5 | 5 | 5 | 4.3 | 0.5 | 2.5 | 4 | 4 | 3.9 | 0.4 | 0.5 | 11.8 | | 5 | PnC2 | PnC2 | 64 | | 23.7 | Dodge | DnC2 | 9% | 88 | 2.8 | 4 | 6 | 5.5 | 0.6 | 2.9 | 4 | 5 | 4.9 | 0.4 | 0.8 | 19.0 | | 5 | DnC2 | DnC2 | 64 | | 24.0 | Ringwood | RnC2 | 9% | 42 | 2.7 | 5 | 7 | 6.9 | 0.5 | 2.5 | 4 | 6 | 6.0 | 0.4 | 1.0 | 24.0 | | 5 | EfB | EfB | 64 | | 24.0 | Dresden | DsB | 4% | 66 | 3.5 | 4 | 8 | 7.9 | 0.3 | 3.5 | 4 | 7 | 6.5 | 0.2 | 1.5 | 36.0 | | 2 | WxC2 | WxC2 | 64 | | 24.3 | Griswold | GwC | 8% | 96 | 1.1 | 1 | 3 | 2.5 | 0.1 | 0.7 | 1 | 1 | 1.0 | 0.0 | 1.6 | 38.9 | | 5 | PnB | PnB | 64 | | 24.4 | McHenry | MdC2 | 9% | 33 | 3.1 | 5 | 4 | 3.6 | 0.3 | 2.7 | 4 | 3 | 2.6 | 0.4 | 0.9 | 22.0 | | 5 | RnC2 | RnC2 | 64 | | 24.7 | Troxel | TrB | 2% | 151 | 2.2 | 4 | 5 | 4.0 | 0.6 | 2.2 | 4 | 4 | 3.6 | 0.5 | 0.5 | 12.4 | _ | 5 | EfB | EfB | 64 | | 24.8 | Radford | RaA | 2% | 48 | 4.5 | 6 | 2 | 1.6 | 0.2 | 3.3 | 5 | 1 | 0.4 | 0.2 | 1.2 | 29.8 | | 5 | RnC2 | RnC2 | 64 | | 24.9 | Rockton | RoC2 | 9% | 39 | 1.6 | 2 | 1 | 0.6 | 0.3 | 1.7 | 2 | 1 | 0.6 | 0.2 | 0.1 | 2.5 | | 3 | DsC2 | DsC2 | 64 | | 25.0 | Batavia | BbB | 2% | 79 | 1.9 | 4 | 2 | 1.7 | 0.4 | 1.8 | 4 | 2 | 1.3 | 0.7 | 0.1 | 2.5 | | 5 | RaA | RaA | 64 | | 25.7 | Plano | PnB | 4% | 37 | 1.9 | 4 | 3 | 1.8 | 7.0 | 1.9 | 3 | 2 | 1.8 | 0.7 | 6.3 | 161.9 | | 5 | PnB | PnB | 64 | | 26.0 | Griswold | GwD2 | 15% | 86 | 6.4 | 14 | 12 | 11.2 | 1.0 | 6.2 | 14 | 10 | 8.3 | 1.6 | 2.3 | 59.8 | | 5 | GwB | GwB | 64 | | 26.0 | McHenry | MdC2 | 9% | 20 | 5.0 | 6 | 4 | 4.1 | 0.3 | 3.8 | 5 | 2 | 2.0 | 0.2 | 2.2 | 57.2 | | 5 | PnB | PnB | 64 | | 26.5 | Dresden | DsB | 4% | 148 | 0.7 | 1 | 1 | 0.7 | 0.5 | 0.7 | 1 | 1 | 0.6 | 0.5 | 0.1 | 2.7 | | 3 | BoD2 | BoD2 | 64 | | 26.7 | Kidder | KrD2 | 15% | 8 | 3.4 | 5 | 3 | 2.9 | 0.3 | 2.9 | 4 | 2 | 1.6 | 0.3 | 1.3 | 34.7 | | 5 | TrB | TrB | 64 | | 27.0 | Griswold | GwD2 | 16% | 56 | 3.0 | 3 | 2 | 1.9 | 0.3 | 2.9 | 3 | 2 | 1.3 | 0.5 | 0.4 | 10.8 | | 5 | RnC2 | RnC2 | 64 | | 27.1 | Ringwood | RnC2 | 15% | 14 | 2.5 | 4 | 4 | 3.7 | 0.6 | 2.4 | 4 | 4 | 2.7 | 0.9 | 0.7 | 19.0 | | 5 | MdD2 | MdD2 | 64 | | 27.3 | Batavia | BbB | 4% | 122 | 2.5 | 2 | 1 | 1.0 | 0.4 | 2.3 | 2 | 1 | 0.6 | 0.4 | 0.4 | 10.9 | | 4 | BbB | BbB | 64 | | 28.1 | Whalan | WxD2 | 16% | 19 | 3.0 | 4 | 3 | 2.8 | 0.4 | 2.8 | 4 | 2 | 1.5 | 0.5 | 1.2 | 33.7 | | 4 | GwD2 | PnB | 63 | | 28.7 | Plano | PnB | 4% | 101 | 0.9 | 2 | 2 | 1.9 | 0.2 | 0.8 | 1 | 1 | 0.8 | 0.2 | 1.1 | 31.6 | | 3 | DsC2 | DsC2 | 63 | | 29.1 | Dresden | DsC2 | 9% | 62 | 1.1 | 2 | 4 | 3.6 | 0.4 | 1.0 | 2 | 2 | 2.0 | 0.3 | 1.7 | 49.5 | | 4 | PoC2 | PoB | 63 | | 29.3 | Troxel | TrB | 4% | 120 | 1.7 | 2 | 5 | 4.2 | 0.6 | 1.7 | 2 | 3 | 2.5 | 0.3 | 2.0 | 58.6 | | 4 | PoB | PoB | 63 | | 29.3 | McHenry | MdD2 | 6% | 39 | 1.0 | 3 | 3 | 2.3 | 1.1 | 0.8 | 3 | 2 | 1.0 | 1.2 | 1.2 | 35.2 | | 4 | EgA | SaA | 63 | | 29.8 | Plano | PnC2 | 9% | 38 | 2.1 | 3 | 6 | 5.0 | 0.5 | 1.7 | 3 | 3 | 2.1 | 0.4 | 3.0 | 89.4 | | 4 | BbB | BbB | 63 | | 30.3 | Griswold | GwC | 8% | 39 | 1.9 | 3 | 5 | 4.4 | 0.3 | 1.5 | 2 | 2 | 1.4 | 0.3 | 3.0 | 90.9 | | 4 | EgA | RaA | 63 | | 31.1 | Orion | Os | 1% | 82 | 2.8 | 6 | 7 | 5.5 | 1.4 | 2.9 | 6 | 6 | 4.6 | 1.4 | 0.9 | 28.0 | | 5 | KrD2 | KrD2 | 63 | | 31.1 | Ringwood | RnC2 | 9% | 83 | 1.5 | 3 | 3 | 3.1 | 0.3 | 1.4 | 3 | 2 | 1.9 | 0.4 | 1.1 | 34.2 | | 3 | DsB | BbB | 63 | | 31.2 | Troxel | TrB | 2% | 71 | 3.6 | 6 | 10 | 9.1 | 0.6 | 3.0 | 5 | 3 | 2.5 | 0.7 | 6.5 | 202.8 | | 4 | GwD2 | GwD2 | 63 | | 31.5 | Troxel | TrB | 2% | 92 | 3.9 | 6 | 12 | 11.8 | 0.7 | 2.9 | 5 | 4 | 3.1 | 0.7 | 8.7 | 274.1 | | 3 | DsC2 | BbB | 63 | | 32.2 | Ringwood | RnB | 4% | 44 | 1.8 | 4 | 4 | 3.1 | 0.7 | 1.5 | 3 | 2 | 1.1 | 0.6 | 2.1 | 67.6 | | 5 | PnB | PnB | 63 | | 32.6 | Plano | PnC2 | 9% | 51 | 2.5 | 4 | 5 | 4.9 | 0.3 | 2.0 | 3 | 2 | 1.9 | 0.2 | 3.1 | 101.1 | | 3 | DsC2 | DsC2 | 63 | | 33.8 | Griswold | GwD2 | 16% | 19 | 1.8 | 4 | 5 | 4.0 | 0.7 | 1.6 | 3 | 2 | 1.5 | 0.7 | 2.5 | 84.5 | | 3 | WrC2 | TrB | 63 | | | | 2017 P | hosphor | us Report - | Low Distu | bance M | anure In | jection | | | | | | | | | | | | | | | |---------|-------------|----------------|---------|--------------------|------------------------|----------------------|--------------|------------------------|---------------|---|----------------------|---------------------|--------------|----------------------|---------------|-----------------------|-------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | W | thout LD | MI | | | | ١ | With LDN | ΛI | | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | 9 | ctual
Soil
oss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Annu
chai
per a | nge | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 35.0 | Ringwood | RnC2 | 9% | 36 | 3.0 | 4 | 6 | 6.0 | 0.3 | | 2.5 | 4 | 2 | 1.9 | 0.2 | 4. | 2 | 147.0 | 4 | BbB | BbB | 63 | | 35.0 | Ringwood | RnC2 | 9% | 67 | 1.2 | 3 | 4 | 3.4 | 0.8 | | 1.0 | 2 | 2 | 1.3 | 0.8 | 2. | 1 | 73.5 | 5 | MdD2 | RnC2 | 63 | | 35.6 | Ringwood | RnC2 | 9% | 90 | 3.0 | 5 | 7 | 6.6 | 0.4 | | 2.4 | 4 | 2 | 2.1 | 0.3 | 4. | 6 | 163.8 | 4 | BbB | BbB | 63 | | 38.8 | Plano | PnB | 4% | 78 | 2.2 | 2 | 3 | 3.1 | 0.2 | | 2.1 | 2 | 2 | 2.0 | 0.2 | 1. | 1 | 42.7 | 4 | PoB | EgA | 63 | | 47.2 | Plano | PnB | 4% | 84 | 2.9 | 7 | 8 | 6.0 | 1.6 | | 2.8 | 7 | 7 | 4.7 | 2.1 | 0. | 8 | 37.8 | 5 | PnB | PnB | 63 | | 49.8 | Plano | PoB | 4% | 84 | 0.8 | 1 | 1 | 1.1 | 0.3 | | 0.7 | 1 | 1 | 0.3 | 0.4 | 0. | 7 | 34.9 | 4 | Mc | BbB | 63 | | 52.1 | Plano | PoB | 4% | 141 | 0.4 | 1 | 1 | 0.6 | 0.3 | | 0.4 | 1 | 1 | 0.4 | 0.3 | 0. | 2 | 10.4 | 3 | DsC2 | BbB | 63 | | 56.4 | Plano | PnB | 4% | 104 | 2.7 | 4 | 3 | 2.9 | 0.4 | | 2.5 | 3 | 2 | 1.6 | 0.4 | 1. | 3 | 73.3 | 3 | HaA | HaA | 63 | | 58.0 | Plano | PnB | 4% | 89 | 1.3 | 1 | 1 | 0.9 | 0.1 | | 1.2 | 1 | 1 | 0.7 | 0.1 | 0. | 2 | 11.6 | 4 | BbB | BbB | 63 | | 60.0 | Radford | RaA | 2% | 86 | 0.8 | 2 | 1 | 0.6 | 0.5 | | 0.7 | 2 | 1 | 0.4 | 0.5 | 0. | 2 | 12.0 | 3 | BoC2 | PoA | 63 | | 75.0 | Rockton | RoD2 | 21% | 36 | 3.7 | 5 | 5 | 4.3 | 0.5 | | 3.4 | 4 | 2 | 2 | 0.5 | 2. | 3 | 172.5 | 3 | HaA | HaA | 63 | | 77.2 | Rockton | RoC2 | 9% | 42 | 2.2 | 3 | 5 | 4.4 | 0.2 | | 1.8 | 2 | 2 | 1.9 | 0.2 | 2. | 5 | 193.0 | 3 | DsB | DsB | 63 | | 114.5 | Batavia | BbB | 4% | 98 | 3.8 | 6 | 5 | 4.9 | 0.5 | | 3.5 | 5 | 2 | 1.8 | 0.4 | 3. | 2 | 366.4 | 4 | BbB | BbB | 63 | | 3,885.0 | Total Acres | | 223 | Total
Fields | | 63
571.0
acres | | 64
3,110.2
acres | | | | 65
12.6
acres | | 66
191.2
acres | | Aver
Chan
P Lo | ge in | 1.4 | Medium
Change in P
Loss | 0.9 | Total Lbs P | 6039.2 | | | | | 201 | 17 Phospho | rus Report | -Strip Till | age | | | | | | | | | | | | | | |---------|----------------------|----------------|----------|--------------------|------------------------|----------------------|--------------|-----------------------|---------------|------------------------|--------------|--------------|----------|---------------|--------------------------------|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | | Witho | ut Strip | Tillage | | | Wit | th Strip T | illage | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil
Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. Pl | Soluble
PI | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Annual P
change per
acre | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 5.9 | Batavia | BbB | 4% | 30 | 1.6 | 2 | 1 | 1.1 | 0.8 | 1.5 | 2 | 1 | 0.6 | 0.8 | 0.5 | 3.0 | 4 | BbB | BbB | 64 | | 7.7 | Virgil | VrB | 3% | 77 | 0.9 | 2 | 2 | 0.7 | 1.7 | 0.8 | 2 | 3 | 0.3 | 3.1 | -1.0 | -7.7 | 5 | VrB | VrB | 64 | | 9.1 | Dresden | DsB | 2% | 83 | 1.9 | 1 | 1 | 0.4 | 0.5 | 1.8 | 1 | 1 | 0.2 | 0.8 | -0.1 | -0.9 | 3 | DsB | DsB | 64 | | 9.6 | Troxel | TrB | 2% | 195 | 0.4 | 1 | 1 | 0.8 | 0.6 | 0.3 | 1 | 1 | 0.6 | 0.8 | 0.0 | 0.0 | 5 | TrB | TrB | 64 | | 10.0 | Kidder | KeB2 | 4% | 17 | 4.8 | 5 | 10 | 9.3 | 0.7 | 4.3 | 4 | 8 | 7.4 | 0.8 | 1.8 | 18.0 | 5 | KeB2 | KeB2 | 69 | | 13.6 | McHenry | MdC2 | 9% | 12 | 1.4 | 2 | 3 | 2.1 | 1.0 | 1.3 | 2 | 3 | 0.9 | 1.9 | 0.3 | 4.1 | 5 | MdC2 | MdC2 | 64 | | 16.0 | Elburn | EoA | 2% | 64 | 0.7 | 2 | 2 | 1.2 | 0.6 | 0.6 | 1 | 2 | 0.8 | 0.8 | 0.2 | 3.2 | 5 | EoA | EoA | 69 | | 16.1 | Radford | RaA | 2% | 69 | 1.9 | 3 | 3 | 2.3 | 1.2 | 1.7 | 3 | 3 | 1.3 | 1.3 | 0.9 | 14.5 | 5 | RaA | RaA | 64 | | 17.5 | Griswold | GrC2 | 8% | 9 | 2.7 | 2 | 1 | 1.4 | 0.1 | 2.5 | 2 | 1 | 1.2 | 0.1 | 0.2 | 3.5 | 4 | GrC2 | GrC2 | 69 | | 20.0 | Batavia | BbB | 4% | 57 | 0.7 | 2 | 4 | 1.3 | 2.9 | 0.2 | 1 | 3 | 0.3 | 2.7 | 1.2 | 24.0 | 4 | BbB | BbB | 64 | | 22.8 | Westville | WfB2 | 4% | 12 | 1.8 | 1 | 1 | 0.7 | 0.1 | 1.5 | 1 | 1 | 0.4 | 0.2 | 0.2 | 4.6 | 5 | WfB2 | WfB2 | 69 | | 23.0 | Dodge | DnB | 4% | 18 | 2.7 | 2 | 4 | 3.4 | 0.3 | 0.7 | 1 | 1 | 0.4 | 0.2 | 3.1 | 71.3 | 5 | MdB | DnB | 69 | | 23.5 | Kegonsa | KeB | 2% | 167 | 1.8 | 2 | 2 | 1.2 | 0.9 | 1.2 | 2 | 2 | 0.3 | 1.2 | 0.6 | 14.1 | 3 | KeB | KeB | 64 | | 25.0 | Dresden | DrD2 | 16% | 49 | 3.7 | 4 | 8 | 7.4 | 0.3 | 2.7 | 3 | 4 | 3.5 | 0.3 | 3.9 | 97.5 | 3 | DrD2 | BbB | 64 | | 26.7 | Wacousta | Wa | 1% | 47 | 0.2 | 1 | 2 | 0.1 | 1.5 | 0.2 | 1 | 2 | 0.1 | 2.4 | -0.9 | -24.0 | 5 | Wa | Wa | 64 | | 28.4 | Whalan | WxC2 | 9% | 63 | 3.2 | 4 | 5 | 4.7 | 0.4 | 0.9 | 2 | 2 | 1.0 | 0.5 | 3.6 | 102.2 | 2 | WxC2 | WxC2 | 64 | | 33.7 | Virgil | VrB | 3% | 65 | 1.3 | 3 | 3 | 0.6 | 2.2 | 1.3 | 3 | 5 | 0.7 | 3.8 | -1.7 | -57.3 | 5 | VrB | VrB | 64 | | 36.3 | Sebewa | Se | 1% | 17 | 0.6 | 1 | 1 | 0.3 | 0.3 | 0.5 | 1 | 1 | 0.2 | 0.4 | 0.0 | 0.0 | 3 | Se | Se | 69 | | 39.1 | Dresden | DsC2 | 9% | 118 | 4.0 | 2 | 2 | 1.3 | 0.5 | 2.8 | 2 | 1 | 0.7 | 0.8 | 0.3 | 11.7 | 3 | DsC2 | DsC2 | 64 | | 44.7 | Dodge | DnB | 4% | 15 | 1.3 | 1 | 1 | 1.0 | 0.3 | 1.1 | 1 | 1 | 0.5 | 0.4 | 0.4 | 17.9 | 5 | DnB | MdB | 69 | | 55.0 | Plano | PIB | 4% | 125 | 1.5 | 2 | 3 | 2.0 | 0.6 | 1.3 | 2 | 2 | 1.5 | 0.7 | 0.4 | 22.0 | 5 | PIB | PIB | 69 | | 55.0 | Plano | PnB | 4% | 17 | 1.0 | 1 | 1 | 0.6 | 0.1 | 0.9 | 1 | 0 | 0.1 | 0.1 | 0.5 | 27.5 | 5 | PnB | PnB | 64 | | 57.1 | Kegonsa | KeB2 | 4% | 27 | 4.6 | 5 | 12 | 11.4 | 0.8 | 4.3 | 5 | 10 | 9.4 | 1.0 | 1.8 | 102.8 | 5 | KeB2 | KeB2 | 69 | | 68.2 | Kidder | KeB2 | 9% | 15 | 2.7 | 1 | 1 | 1.1 | 0.1 | 1.8 | 1 | 1 | 0.4 | 0.1 | 0.7 | 47.7 | 5 | KeB2 | KdC2 | 69 | | 71.4 | Dresden | DsC2 | 9% | 113 | 4.1 | 2 | 2 | 1.2 | 1.1 | 3.0 | 2 | 2 | 1.0 | 1.4 | -0.1 | -7.1 | 3 | DsC2 | DsC2 | 64 | | 75.8 | Salter | SfB2 | 4% | 21 | 3.1 | 2 | 2 | 1.7 | 0.2 | 2.8 | 2 | 1 | 0.8 | 0.4 | 0.7 | 53.1 | 5 | SfB2 | SfB2 | 69 | | 77.4 | Plano | PIB | 9% | 25 | 11.5 | 13 | 25 | 23.7 | 1.4 | 10.8 | 12 | 20 | 18.7 | 1.6 | 4.8 | 371.5 | | KeC2 | PIB | 69 | | 90.0 | Plano | PIA | 1%
9% | 48 | 1.2 | 1 | 1 | 0.6 | 0.2 | 0.3 | 0 | 0 | 0.4 | 0.3 | 0.1 | 9.0
67.0 | 5 | PIA
GwC | PIA
GwC | 69
64 | | 109.1 | Griswold
Griswold | GwC
GrC2 | 8% | 22 | 3.5 | 3 | 2 | 0.8
1.5 | 0.1 | 3.2 | 2 | 1 | 0.1 | 0.1 | 0.7 | 76.4 | 4 | GrC2 | GrC2 | 69 | | 110.0 | Plano | PmA | 1% | 45 | 0.5 | 1 | 1 | 0.6 | 0.1 | 0.5 | 0 | 1 | 0.7 | 0.2 | 0.7 | 22.0 | 4 | PmA | PmA | 69 | | 110.0 | Batavia | BbC2 | 9% | 16 | 1.7 | 1 | 2 | 1.9 | 0.1 | 1.3 | 1 | 1 | 1.1 | 0.1 | 0.8 | 88.0 | 4 | BbC2 | BbA | 69 | | 117.0 | Plano | PmA | 1% | 40 | 0.5 | 1 | 1 | 0.6 | 0.2 | 0.4 | 1 | 0 | 0.3 | 0.1 | 0.4 | 46.8 | 4 | PmA | PmA | 69 | | 153.0 | Dresden | DsB | 4% | 33 | 1.3 | 1 | 2 | 1.9 | 0.1 | 1.1 | 1 | 1 | 1.2 | 0.2 | 0.6 | 91.8 | 3 | DsB | DsB | 69 | | 155.1 | Sebewa | Se | 1% | 55 | 1.4 | 2 | 3 | 2.0 | 1.4 | 1.4 | 2 | 3 | 1.5 | 1.0 | 0.9 | 139.6 | 3 | Se | Se | 69 | | 1,828.5 | Total Acres | | 35 | Total
Fields | | 64
480.5
acres | | 69
1348.0
acres | | | | | | | Average
Change in P
Loss | 0.8 | Medium
Change in P
Loss | 0.5 | Total Lbs P | 1457.6 | | | | | 2017 P | hosphorus | Report -N | ∕lanure S | tacking | | | | | | | | | | | | | | | |-------|---------------------------------------|----------------|--------|--------------------|------------------------|---------------------|--------------|----------------------|---------------|------------------------|--------------|--------------|----------|---------------|--------------------------------|---------------------------------|------------------------------|---|-----------------------|--|--| | | | | | | | Wint | ter Sprea | ding | | | No W | /inter Spr | eading | | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
Pl | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Annual P
change per
acre | Annual P
change for
field | Tons of
manure
Stacked | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 35.5 | Huntville | HuB | 4% | 87 | 1.1 | 2 | 4 | 1.9 | 2.3 | 1.1 | 2 | 2 | 1.6 | 0.5 | 2.1 | 74.6 | 355 | 5 | HuB | HuB | 64 | | 37.2 | McHenry | MdC2 | 9% | 98 | 3.0 | 4 | 5 | 4.0 | 1.0 | 2.9 | 4 | 4 | 3.5 | 0.5 | 1.0 | 37.2 | 372 | 5 | MdC2 | MdC2 | 63 | | 25.0 | | | | | | | | | | | | | | | 2.1 | 52.5 | 248 | | | | | | 59.0 | McHenry | MdD2 | 16% | 113 | 2.9 | 5 | 14 | 12.9 | 1.6 | 2.9 | 5 | 12 | 11.1 | 0.8 | 2.6 | 153.4 | 590 | 5 | MdD2 | MdD2 | 64 | | 15.3 | McHenry | MdD2 | 9% | 27 | 1.6 | 3 | 3 | 1.5 | 1.1 | 1.6 | 3 | 2 | 1.2 | 0.2 | 1.2 | 18.4 | 153 | 5 | MdD2 | MdD2 | 64 | | 20.0 | | | | | | | | | | | | | | | 2.1 | 42.0 | 196 | | | | | | 27.3 | Dodge | DnC2 | 9% | 160 | 5.6 | 8 | 11 | 8.0 | 2.6 | 5.6 | 8 | 6 | 5.2 | 1.0 | 4.4 | 120.1 | 275 | 5 | DnC2 | DnB | 64 | | 23.0 | Plano | PoB | 4% | 177 | 2.2 | 4 | 4 | 2.4 | 1.9 | 2.2 | 4 | 3 | 2.3 | 0.9 | 1.1 | 25.3 | 228 | 3 | WrB | PoB | 64 | | 59.0 | Ringwood | RnC2 | 9% | 78 | 3.7 | 6 | 7 | 5.3 | 1.7 | 3.7 | 6 | 5 | 4.5 | 0.1 | 2.4 | 141.6 | 590 | 5 | RnC2 | RnC2 | 64 | | 301.3 | Total Acres | | 9 | Total
Farms | | 63
37.2
acres | | 64
264.1
acres | | | | | | | Average
Change in P
Loss | 2.1 | | Medium
Change in P
Loss | 2.1 | Total Lbs P | 665.0 | | 219.3 | Acres that could have received manure | | 7 | Farms | | | | | | | | | | | | | | | | Total pounds
of phosphorus
not lost in
winter | 498.1 | | | | 20 | 17 Phos | phorus Repo | ort - Comb | ination of | f Practice | es | | | | | | | | | | | | | | | | | | |-------|-------------|----------------|---------|--------------------|------------------------|--------------|--------------|-------------|---------------|------------------------|--------------|---------------|------------|---------------|---|--|-------------------------------|------------------------------------|---------------------------------------|---|---------------------------------|---|-----------------------|--------------------------|--| | | | | | | V | Vithout T | illage/Co | ver Crop | s | | With Ti | lage/Co | ver Crop | s | | | | | | | | | | | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Combined
Tillage P
change per
acre | Combined
Cover Crop
P change
per acre | Total P
change per
acre | Phosphorus
Reduction
Tillage | Phosphorus
Reduction
Cover Crop | Increase or
Decrease in
Phosphorus
Reduction | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 55.0 | Plano | PIB | 4% | 125 | 1.8 | 2 | 4 | 3.5 | 0.4 | 1.3 | 2 | 2 | 1.5 | 0.7 | 1.7 | 0.5 | 2.2 | 0.4 | 0.0 | 1.8 | 99.0 | 5 | PIB | PIB | 69 | | | | | | | 1.8 | 2 | 2 | 1.1 | 0.8 | 1.3 | 2 | 1 | 0.8 | 0.6 | | | | | | | | | | | | | 111.0 | Plano | PmA | 1% | 45 | 0.6 | 1 | 1 | 0.9 | 0.1 | 0.5 | 0 | 1 | 0.4 | 0.2 | 0.4 | 0.1 | 0.5 | 0.2 | 0.0 | 0.3 | 33.3 | 4 | PmA | PmA | 69 | | | | | | | 0.6 | 1 | 0 | 0.3 | 0.1 | 0.5 | 0 | 0 | 0.2 | 0.1 | | | | | | | | | | ļ | | | 110.0 | Batavia | BbC2 | 9% | 16 | 1.9 | 1 | 3 | 2.5 | 0 | 1.3 | 1 | 1 | 1.1 | 0.1 | 1.3 | 0.3 | 1.6 | 0.8 | 0.0 | 0.8 | 88.0 | 4 | BbC2 | BbA | 69 | | 16.0 | Elburn | EoA | 20/ | 64 | 0.8 | 2 | 2 | 0.8
1.8 | 0 | 1.3 | 1 | 1 | 0.5 | 0.7 | 1.1 | -0.1 | 1 | 0.2 | 0.1 | 0.7 | 11.2 | 5 | EoA | EoA | 69 | | 16.0 | Elburn | EOA | 2% | 64 | 0.8 | 2 | 1 | 0.7 | 0.5 | 0.6 | 1 | 2 | 0.5 | 0.7 | 1.1 | -0.1 | 1 | 0.2 | 0.1 | 0.7 | 11.2 | - 5 | EOA | EOA | 69 | | 90.0 | Plano | PIA | 1% | 48 | 0.8 | 1 | 1 | 0.7 | 0.8 | 0.8 | 1 | 1 | 0.8 | 0.8 | 0.2 | 0.2 |
0.4 | 0.1 | 0.0 | 0.3 | 27.0 | 5 | PIA | PIA | 69 | | | Tidilo | - 116 | | 40 | 0.4 | 1 | 1 | 0.4 | 0.3 | 0.3 | 1 | 1 | 0.3 | 0.2 | 0.2 | 0.2 | 0.4 | | 0.0 | 0.5 | 27.0 | | | + | + | | 117.0 | Plano | PmA | 1% | 40 | 0.5 | 1 | 1 | 0.9 | 0.1 | 0.4 | 1 | 1 | 0.4 | 0.2 | 0.4 | 0.1 | 0.5 | 0.4 | 0.1 | 0.0 | 0.0 | 4 | PmA | PmA | 69 | | | | | | | 0.5 | 1 | 1 | 0.3 | 0.2 | 0.4 | 1 | 0 | 0.3 | 0.1 | | | | | | | | | | <u> </u> | | | 153.0 | Dresden | DsB | 4% | 33 | 1.5 | 1 | 3 | 2.7 | 0.1 | 1.1 | 1 | 1 | 1.2 | 0.2 | 1.4 | 0.3 | 1.7 | 0.6 | 0.1 | 1.0 | 153.0 | 3 | DsB | DsB | 69 | | | | | | | 1.5 | 1 | 1 | 1 | 0.1 | 1.1 | 1 | 1 | 0.7 | 0.1 | | | | | | | | | | | | | 22.0 | Rockton | RoD2 | 21% | 72 | 3.9 | 5 | 7 | 6.4 | 0.5 | 1.8 | 3 | 4 | 3.6 | 0.3 | 3 | 7.5 | 10.5 | 2.6 | 5.8 | 2.1 | 46.2 | 2 | RoD2 | RoC2 | 64 | | | | | | | 3.9 | 5 | 12 | 11.5 | 0.7 | 1.8 | 3 | 5 | 4.1 | 0.6 | | | | | | | | | | | | | 8.1 | Griswold | GwC | 8% | 103 | 2.3 | 4 | 4 | 3.5 | 0.8 | 1.5 | 3 | 3 | 2.3 | 0.7 | 1.3 | 3 | 4.3 | 1.2 | 2.6 | 0.5 | 4.1 | 5 | GwC | RnB | 64 | | | | | | | 2.3 | 4 | 6 | 4.5 | 1.1 | 1.5 | 3 | 3 | 1.8 | 0.8 | | | | | | | | | | | | | 20.1 | Sogin | SoE | 33% | 42 | 6.1 | 8 | 14 | 13.6 | 0.4 | 2.9 | 4 | 8 | 8.0 | 0.3 | 5.7 | 14.7 | 20.4 | 5.3 | 12.1 | 3.0 | 60.3 | 1 | SoE | RoC2 | 64 | | | | | | | 6.1 | 8 | 23 | 22.5 | 0.7 | 2.9 | 4 | 8 | 7.8 | 0.7 | | | | | | | | | | | | | 24.0 | Dresden | DsB | 4% | 66 | 3.5 | 5 | 7 | 5.8 | 0.7 | 3 | 4 | 5 | 4.1 | 0.6 | 1.8 | 3.7 | 5.5 | 1.6 | 3.6 | 0.3 | 7.2 | 3 | DsB | VwA | 64 | | | | | | | 3.5 | 5 | 7 | 5.8 | 1.1 | 3 | 4 | 3 | 2.4 | 0.8 | | | | | | | | | ļ <u> </u> | ļ | <u> </u> | | 18.4 | Dresden | DrD2 | 16% | 60 | 5.7 | 7 | 9
17 | 8.4
16.1 | 1.1 | 4.2 | 5 | 5
7 | 4.4
6.5 | 0.3 | 4.2 | 9.8 | 14 | 3.9 | 8.5 | 1.6 | 29.4 | 3 | DrD2 | KeB | 64 | | 7.4 | Plano | PnB | 4% | 117 | 3.9 | 7 | 11 | 9.8 | 0.8 | 3.7 | 6 | 10 | 9.6 | 0.8 | 0.2 | 2.3 | 2.5 | 0.8 | 1.4 | 0.3 | 2.2 | 5 | PnB | PnB | 64 | | 7.4 | Fidilo | FIID | 470 | 117 | 3.9 | 7 | 8 | 6.9 | 0.7 | 3.7 | 6 | 5 | 4.8 | 0.5 | 0.2 | 2.3 | 2.5 | 0.8 | 1.4 | 0.3 | 2.2 | | FIIB | FIID | - 04 | | 11.5 | Warsaw | WrC2 | 9% | 105 | 1.7 | 3 | 3 | 2.5 | 0.7 | 0.6 | 2 | 2 | 1.1 | 0.7 | 1.4 | 4.3 | 5.7 | 1.4 | 2.3 | 2.0 | 23.0 | 2 | RoC2 | WrC2 | 64 | | | | | | | 1.7 | 3 | 8 | 6.6 | 0.9 | 0.6 | 2 | 3 | 2.5 | 0.7 | | | | | | | | | | † | | | 22.5 | Dodge | DsB | 4% | 103 | 2.3 | 4 | 6 | 5.1 | 0.8 | 2.2 | 4 | 6 | 5.0 | 0.8 | 0.1 | 1.8 | 1.9 | 0.8 | 0.9 | 0.2 | 4.5 | 3 | DsB | TrB | 64 | | | | | | | 2.3 | 4 | 7 | 6.3 | 0.6 | 2.2 | 4 | 5 | 4.6 | 0.5 | | | | | | | | | | | | | 13.6 | Rockton | RoC2 | 9% | 64 | 3.0 | 4 | 5 | 4.5 | 0.7 | 2.1 | 3 | 4 | 3.1 | 0.5 | 1.6 | 6.2 | 7.8 | 1.1 | 4.7 | 2.0 | 27.2 | 2 | RoC2 | RoC2 | 64 | | | | | | | 3.0 | 4 | 9 | 8.1 | 0.8 | 2.1 | 3 | 3 | 2.2 | 0.5 | | | | | | | | | | | | | 13.2 | Rockton | RoC2 | 9% | 58 | 2.5 | 3 | 3 | 2.1 | 0.4 | 1.4 | 2 | 2 | 1.3 | 0.4 | 0.8 | 4.9 | 5.7 | 0.6 | 3.3 | 1.8 | 23.8 | 2 | RoC2 | RoC2 | 64 | | | | | | | 2.5 | 3 | 7 | 6.4 | 0.5 | 1.4 | 2 | 2 | 1.7 | 0.3 | | | | | | | | | | ļ | | | 10.2 | Kidder | KrD2 | 15% | 84 | 4.0 | 4 | 3 | 2.5 | 0.3 | 3.8 | 4 | 2 | 2.2 | 0.2 | 0.4 | 6.1 | 6.5 | 0.3 | 1.0 | 5.2 | 53.0 | 5 | KrD2 | PnC2 | 64 | | | Birry I | D. 65 | 051 | | 4.0 | 4 | 9 | 8.3 | 0.2 | 3.8 | 4 | 2 | 2.2 | 0.2 | | 2: | | | | | | | <u> </u> | | | | 9.8 | Ringwood | RnC2 | 9% | 55 | 2.4 | 3 | 3 | 3.1 | 0.2 | 1.4 | 2 | 2 | 2.0 | 0.2 | 1.1 | 3.1 | 4.2 | -0.1 | 4.1 | 0.2 | 2.0 | 5 | RnC2 | TrB | 64 | | 10.3 | St Charles | ScD2 | 16% | 58 | 3.9 | 3 | 5
6 | 5.1 | 0.3 | 1.4 | 2 | <u>2</u>
5 | 2.0
4.8 | 0.3 | 1 | 2.3 | 3.3 | 3.0 | 3.8 | -3.5 | -36.1 | 5 | ScD2 | PnB | 64 | | 10.5 | Ji Cridiles | JUZ | 1070 | 36 | 3.9 | 4 | 4 | 3.9 | 0.2 | 1.7 | 2 | 2 | 1.7 | 0.3 | 1 | 2.3 | 3.3 | 3.0 | 3.0 | -3.3 | -30.1 | | JUZ | r'IID | 04 | | 6.4 | Kidder | KrE2 | 28% | 59 | 5.7 | 6 | 7 | 6.6 | 0.4 | 4.8 | 5 | 7 | 6.5 | 0.4 | 0.1 | 4.7 | 4.8 | 1.2 | 3.3 | 0.3 | 1.9 | 5 | KrE2 | PnB | 64 | | | Niduci | MLZ | 2070 | 33 | 5.7 | 6 | 10 | 9.6 | 0.4 | 4.8 | 5 | 6 | 5.2 | 0.4 | 0.1 | 7.7 | 4.0 | 1.2 | 3.3 | 0.5 | 1.5 | | MILE | 1110 | | | 11.0 | Ringwood | RnC2 | 9% | 55 | 4.2 | 5 | 6 | 5.9 | 0.5 | 3.5 | 4 | 6 | 5.4 | 0.4 | 0.6 | 3.6 | 4.2 | 0.5 | 3.6 | 0.1 | 1.1 | 5 | RnC2 | RnC2 | 64 | | | 0 | | | | 4.2 | 5 | 10 | 9.2 | 0.5 | 3.5 | 4 | 6 | 5.7 | 0.4 | | | | | | | | | t | † | | | 23.5 | Ringwood | RnC2 | 9% | 63 | 4.6 | 5 | 10 | 8.9 | 0.6 | 4.3 | 5 | 9 | 8.1 | 0.5 | 0.9 | 1.8 | 2.7 | 0.6 | 1.8 | 0.3 | 7.1 | 5 | RnC2 | PnB | 64 | | | | | | | 4.6 | 5 | 11 | 10.2 | 0.4 | 4.3 | 5 | 9 | 8.5 | 0.3 | | | | | | | | | | 1 | 1 | | 7.5 | Kidder | KdD2 | 16% | 56 | 6.0 | 6 | 10 | 9.6 | 0.5 | 4.0 | 4 | 9 | 8.4 | 0.4 | 1.3 | 4.9 | 6.2 | 0.1 | 5.0 | 1.1 | 8.3 | 5 | KdD2 | PnC2 | 64 | | | | | | | 6.0 | 6 | 8 | 7.6 | 0.4 | 4.0 | 4 | 3 | 2.8 | 0.3 | | | | | | | | | | | | | 15.4 | Griswold | GwC | 8% | 20 | 5.0 | 5 | 7 | 6.4 | 0.4 | 4.5 | 4 | 6 | 5.8 | 0.2 | 0.8 | 2 | 2.8 | 0.4 | 2.3 | 0.1 | 1.5 | 5 | GwC | RnB | 64 | | | | 20 | 017 Phos | sphorus Repo | ort - Comb | ination o | f Practic | es | | | | | | | | | | | | | | | | | |-------|-----------|----------------|----------|--------------------|------------|--------------|--------------|--------------------|--------------|------------|-------------|----------|---------------|---------------------------------|------------------------------------|--------------------|----------------------|-------------------------|--|---------------------|--------------------|-----------------------|--------------------------|----------------| | | | | | | Actual | Vithout T | illage/Co | over Crops | Actual | With Tilla | ige/Co | ver Crop | s | Combined | Combined | Total P | Phosphorus | Phosphorus | Increase or | Annual P | Tolerable Soil | | | Yahara Stream | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Soil | Rotat.
PI | Annual
PI | Part. PI Soluble | Soil
Loss | Rotat. A | nnual
PI | Part. PI | Soluble
PI | Tillage P
change per
acre | Cover Crop
P change
per acre | change per
acre | Reduction
Tillage | Reduction
Cover Crop | Decrease in
Phosphorus
Reduction | change for
field | Loss for the field | Critical Soil
used | Predominant
Soil used | Reach field is | | | | | | | 5.0 | 6 | 5 | 5.4 0.3 | 4.5 | 4 | 4 | 3.4 | 0.3 | | | | | | | | | | | | | 75.0 | Rockton | RoD2 | 21% | 36 | 1.9 | 2 | 3 | 2.7 0.4 | 1.6 | 2 | 2 | 1.9 | 0.4 | 0.8 | 2.3 | 3.1 | 1.3 | 0.8 | 1.0 | 75.0 | 2 | RoD2 | RnC2 | 64 | | | | | | | 1.9 | 3 | 4 | 3.4 1.0 | 1.6 | 2 | 2 | 1.8 | 0.3 | | | | | | | | | | | | | 35.0 | Ringwood | RnC2 | 9% | 35 | 1.1 | 1 | 2 | 1.5 0.3
1.6 0.8 | 1.0 | 1 | 1 | 1.0 | 0.3 | 0.5 | 1.3 | 1.8 | 1.3 | 0.5 | 0.0 | 0.0 | 5 | RnC2 | RnB | 64 | | 71.4 | Dresden | DsC2 | 9% | 113 | 10.2 | 4 | 3 | 2.4 0.9 | 3.0 | 2 | | 1.0 | 1.4 | 0.9 | 2.8 | 3.7 | -0.1 | 1.8 | 2.0 | 142.8 | 3 | DsC2 | DsC2 | 64 | | 71.4 | Diesacii | DICE | 370 | 113 | 10.2 | 4 | 4 | 3.2 0.9 | 3.0 | 2 | 2 | 0.9 | 0.4 | 0.5 | 2.0 | 3.7 | 0.1 | 1.0 | 2.0 | 142.0 | | D3C2 | B3C2 | | | 39.1 | Dresden | DsC2 | 9% | 118 | 8.2 | 3 | 2 | 1.4 0.5 | 2.8 | 2 | 1 | 0.7 | 0.8 | 0.4 | 1.6 | 2 | 0.3 | 0.9 | 0.8 | 31.3 | 3 | DsC2 | DsC2 | 64 | | | | | | | 8.2 | 3 | 3 | 2.5 0.8 | 2.8 | 2 | 2 | 0.7 | 1.0 | | | | | | | | | | | | | 23.5 | Kegonsa | KeB | 2% | 167 | 2.0 | 2 | 2 | 1.0 0.8 | 1.2 | 2 | 2 | 0.3 | 1.2 | 0.3 | 1 | 1.3 | 0.6 | 0.6 | 0.1 | 2.4 | 3 | KeB | KeB | 64 | | | | | | ļ | 2.0 | 2 | 3 | 1.6 1.0 | 1.2 | 2 | 2 | 0.5 | 1.1 | | | | | | | | | | | | | 5.9 | Batavia | BbB | 4% | 30 | 1.7 | 2 | 2 | 1.2 0.3 | 1.5 | 2 | 1 | 0.6 | 0.8 | 0.1 | 0.6 | 0.7 | 0.5 | 0.3 | -0.1 | -0.6 | 4 | BbB | BbB | 64 | | 26.7 | Wacousta | Wa | 1% | 47 | 0.2 | 2 | 2 | 1.5 0.2
0.1 1.5 | 0.2 | 1 | 2 | 0.9 | 0.2
1.4 | 0.1 | 0.2 | 0.3 | -0.9 | 0.1 | 1.1 | 29.4 | 5 | Wa | Wa | 64 | | 20.7 | Wacousta | wa | 1% | 47 | 0.2 | 1 | 1 | 0.1 1.5 | 0.2 | 1 | - <u>-</u> | 0.0 | 0.8 | 0.1 | 0.2 | 0.3 | -0.9 | 0.1 | 1.1 | 29.4 | 5 | VVa | VVa | 04 | | 9.1 | Dresden | DsB | 2% | 83 | 2.0 | 1 | 1 | 0.5 0.5 | 1.8 | 1 | 1 | 0.3 | 0.8 | -0.1 | 0.3 | 0.2 | -0.1 | 0.1 | 0.2 | 1.8 | 3 | DsB | DsB | 64 | | | | | | | 2.0 | 1 | 1 | 0.8 0.5 | 1.8 | 1 | 1 | 0.6 | 0.4 | | | | | | <u> </u> | | | | | | | 16.1 | Radford | RaA | 2% | 69 | 1.9 | 3 | 4 | 2.4 1.2 | 1.7 | 3 | 3 | 1.3 | 1.3 | 1 | 1.1 | 2.1 | 0.9 | 0.6 | 0.6 | 9.7 | 5 | RaA | RaA | 64 | | | | | | | 1.9 | 3 | 4 | 2.9 1.2 | 1.7 | 3 | 3 | 2.0 | 1.0 | | | | | | | | | | | | | 7.7 | Virgil | VrB | 3% | 77 | 1.0 | 2 | 2 | 0.7 1.8 | 0.8 | 2 | 3 | 0.3 | 2.1 | 0.1 | 0.9 | 1 | -1.0 | 0.4 | 1.6 | 12.3 | 5 | VrB | VrB | 64 | | | | | | | 1.0 | 2 | 2 | 1.6 0.8 | 0.8 | 2 | 2 | 0.8 | 0.7 | | | | | | | | | | | | | 33.7 | Virgil | VrB | 3% | 65 | 1.4 | 3 | 3 | 0.5 2.2 | 1.3 | 3 | 5 | 0.7 | 3.8 | -1.8 | 0.8 | -1 | -1.7 | 0.4 | 0.3 | 10.1 | 5 | VrB | VrB | 64 | | 33.8 | Griswold | GwD2 | 16% | 19 | 0.9 | 3 | 1 | 1.6 0.8
0.4 0.2 | 0.8 | 3 | 2 | 0.9 | 0.7 | 0.3 | 0.4 | 0.7 | 0.4 | 0.3 | 0.0 | 0.0 | 2 | WxD2 | GwD2 | 64 | | 33.6 | Griswoid | GWD2 | 10% | 19 | 1.7 | 2 | 1 | 0.4 0.2 | 0.8 | 1 | 1 | 0.2 | 0.1 | 0.5 | 0.4 | 0.7 | 0.4 | 0.5 | 0.0 | 0.0 | | VVXD2 | GWD2 | 04 | | 1.0 | Plano | PnC2 | 9% | 31 | 1.3 | 2 | 1 | 0.9 0.1 | 1.3 | 1 | 1 | 0.7 | 0.1 | 0.2 | 0.9 | 1.1 | 0.2 | 0.9 | 0.0 | 0.0 | 5 | PnC2 | PnC2 | 64 | | | | | | | 1.3 | 2 | 1 | 1.0 0.1 | 0.9 | 1 | 0 | 0.1 | 0.1 | | | | | | | | | | | | | 8.1 | Ringwood | RnC2 | 16% | 21 | 3.1 | 4 | 7 | 6.7 0.2 | 2.8 | 4 | 6 | 5.4 | 0.2 | 1.3 | 1.6 | 2.9 | 2.4 | 1.3 | -0.8 | -6.5 | 4 | GwD2 | RnC2 | 64 | | | | | | | 3.1 | 4 | 7 | 7.0 0.2 | 2.8 | 4 | 6 | 5.4 | 0.2 | | | | | | | | | | | | | 7.4 | Plano | PnB | 4% | 119 | 2.8 | 4 | 5 | 4.9 0.5 | 2.4 | 4 | 4 | 4.0 | 0.5 | 0.9 | 0.6 | 1.5 | 0.6 | 0.9 | 0.0 | 0.0 | 5 | PnB | PnB | 64 | | | | | | | 2.4 | 4 | 6 | 4.5 0.6 | 2.4 | 4 | 4 | 4.0 | 0.5 | | | |
 | | | | | | | | 22.5 | Troxel | TrB | 4% | 103 | 2.4 | 3 | 5 | 4.4 0.5 | 2.2 | 3 | 4 | 3.8 | 0.4 | 0.7 | 0.5 | 1.2 | 0.5 | 0.7 | 0.0 | 0.0 | 3 | DsB | TrB | 64 | | 11.5 | Warsaw | WrC2 | 9% | 105 | 1.0 | 2 | 5 | 4.1 0.6
1.5 0.7 | 0.9 | 2 | 2 | 1.3 | 0.4 | 0.2 | 0 | 0.2 | 0.0 | 0.2 | 0.0 | 0.0 | 2 | RoC2 | WrC2 | 64 | | | vvarsavv | WICZ | 370 | 103 | 1.0 | 2 | 2 | 1.5 0.7 | 0.8 | 2 | | 1.3 | 0.9 | | | 0.2 | | 0.2 | 0.0 | 0.0 | | NOCE | WICZ | | | 13.6 | Rockton | RoC2 | 9% | 64 | 7.8 | 9 | 9 | 7.6 0.9 | 4.3 | 5 | 3 | 2.4 | 0.6 | 5.5 | 0.7 | 6.2 | 0.7 | 5.5 | 0.0 | 0.0 | 2 | RoC2 | RoC2 | 64 | | | | | | <u> </u> | 4.3 | 5 | 4 | 2.8 0.9 | 4.3 | 5 | 3 | 2.4 | 0.6 | | | | | | | | | | | | | 13.2 | Rockton | RoC2 | 9% | 58 | 3.7 | 5 | 6 | 5.9 0.5 | 2.0 | 2 | 2 | 1.9 | 0.4 | 4.1 | 3.6 | 7.7 | 4.1 | 3.6 | 0.0 | 0.0 | 2 | RoC2 | RoC2 | 64 | | | | | | | 4.0 | 5 | 6 | 5.4 0.5 | 2.0 | 2 | 2 | 1.9 | 0.4 | | | | | | | | | | | | | 17.3 | Griswold | GwC | 9% | 47 | 1.2 | 2 | 3 | 2.7 0.3 | 0.8 | 1 | 1 | 0.8 | 0.2 | 2 | 1.5 | 3.5 | 1.1 | 1.2 | 1.2 | 20.8 | 5 | GwC | GwC | 64 | | | D. H. | D. D. | 400/ | | 1.2 | 2 | 4 | 3.2 0.3 | 0.8 | 1 | 2 | 1.5 | 0.5 | | | 10 | | 2.0 | 2.0 | 20.4 | | 0.00 | 0.00 | | | 9.7 | Rockton | RoD2 | 10% | 60 | 2.2 | 2 | 3 | 3.3 0.3 | 1.5 | 2 | 2
3 | 2.2 | 0.5
1.0 | 1.8 | 0 | 1.8 | 2.0 | 2.8 | -3.0 | -29.1 | 2 | RoD2 | RoD2 | 64 | | 24.7 | Troxel | TrB | 2% | 151 | 3.1 | 6 | 7 | 5.7 1.4 | 2.9 | 6 | 6 | 4.6 | 1.0 | 1.1 | 3.2 | 4.3 | 0.9 | 3.1 | 0.3 | 7.4 | 5 | TrB | TrB | 64 | | | HOACI | 1110 | 270 | 131 | 3.1 | 6 | 6 | 4.6 1.4 | 2.9 | 6 | 3 | 1.8 | 1.0 | | 3.2 | 4.5 | 0.5 | 3.1 | 0.5 | / | | + | + | | | 27.0 | Griswold | GwD2 | 16% | 56 | 1.4 | 3 | 13 | 11.9 0.9 | 1.0 | 2 | 8 | 6.8 | 0.8 | 5.2 | 1.8 | 7 | 1.7 | 3.9 | 1.4 | 37.8 | 4 | GwD2 | GwD2 | 64 | | | | | | | 1.4 | 3 | 4 | 3.7 0.4 | 1.0 | 2 | 2 | 2.0 | 0.3 | | | | | | | | | | | | | 29.3 | McHenry | MdD2 | 6% | 39 | 2.2 | 3 | 3 | 2.6 0.2 | 1.5 | 2 | 1 | 1.2 | 0.2 | 1.4 | 3.5 | 4.9 | 3.0 | 1.0 | 0.9 | 26.4 | 5 | MdD2 | MdD2 | 64 | | | | | | | 2.2 | 3 | 5 | 4.9 0.3 | 1.5 | 2 | 2 | 1.4 | 0.3 | | | | | | | | | | | | | | | 20 | 017 Phos | sphorus Rep | ort - Comb | ination o | of Practice | es | | | | | | | | | | | | | | | | | | |---------|-------------|----------------|----------|--------------------|------------------------|--------------|--------------|-----------|---------------|------------------------|--------------|--------------|------------|---------------|---|--|-------------------------------|---|---------------------------------------|---|---------------------------------|---|-----------------------|--|--| | | | | | | \ | Vithout 1 | Tillage/Co | over Crop | os | | With Ti | illage/Co | ver Crop | ıs | | | | <u> </u> | | | | | | ļ | | | Acres | Soil Type | Soil
Symbol | Slope | Soil Test
P PPM | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Actual
Soil
Loss | Rotat.
PI | Annual
PI | Part. PI | Soluble
PI | Combined
Tillage P
change per
acre | Combined
Cover Crop
P change
per acre | Total P
change per
acre | Phosphorus
Reduction
Tillage | Phosphorus
Reduction
Cover Crop | Increase or
Decrease in
Phosphorus
Reduction | Annual P
change for
field | Tolerable Soil
Loss for the
field | Critical Soil
used | Predominant
Soil used | Yahara Stream
Reach field is
located | | 31.1 | Orion | Os | 1% | 82 | 1.2 | 3 | 3 | 2.3 | 1.1 | 0.8 | 3 | 2 | 1.0 | 1.2 | 1.2 | 1.8 | 3 | 2.3 | 1.3 | -0.6 | -18.7 | 5 | Os | Os | 64 | | | | | | | 1.2 | 3 | 4 | 2.3 | 1.5 | 0.8 | 3 | 2 | 0.9 | 1.1 | | | | | | | | | | | | | 7.6 | Plano | PnC2 | 9% | 86 | 2.1 | 5 | 4 | 3.4 | 0.3 | 1.4 | 3 | 2 | 1.9 | 0.4 | 1.4 | 6.4 | 7.8 | 1.1 | 5.3 | 1.4 | 10.6 | 5 | PnC2 | PnC2 | 64 | | | | | | | 2.1 | 5 | 11 | 9.8 | 1.3 | 1.4 | 3 | 5 | 3.7 | 1.0 | | | | | | | | | | ļ | | | 14.0 | Plano | PnC2 | 9% | 98 | 4.7 | 8 | 10 | 9.5 | 1.0 | 3.0 | 5 | 3 | 2.7 | 0.6 | 7.2 | 7.5 | 14.7 | 6.5 | 3.8 | 4.4 | 61.6 | 5 | PnC2 | PnC2 | 64 | | | | | | | 4.7 | 8 | 11 | 10.2 | 0.6 | 3.0 | 5 | 3 | 2.7 | 0.6 | | | | | | | | | | | | | 10.0 | Plano | PnC2 | 2% | 92 | 2.2 | 4 | 5 | 3.7 | 0.9 | 1.6 | 3 | 2 | 1.3 | 0.6 | 2.7 | 2.6 | 5.3 | 2.5 | 1.8 | 1.0 | 10.0 | 5 | PnB | PnB | 64 | | | | | | | 2.2 | 4 | 5 | 4.1 | 0.7 | 1.6 | 3 | 2 | 1.5 | 0.7 | | | | | | | | | | | | | 14.0 | Elburn | EfB | 3% | 60 | 2.1 | 4 | 3 | 2.8 | 0.7 | 1.5 | 3 | 1 | 1.0 | 0.5 | 2 | 2.1 | 4.1 | 2.1 | 1.4 | 0.6 | 8.4 | 5 | EfB | EfB | 64 | | | | | | | 2.1 | 4 | 4 | 3.1 | 0.7 | 1.5 | 3 | 2 | 1.1 | 0.6 | | | | | | | | | | | | | 22.6 | Elburn | EfB | 3% | 84 | 1.5 | 3 | 8 | 4.7 | 2.9 | 1.0 | 2 | 4 | 1.7 | 2.2 | 3.7 | 2.2 | 5.9 | 2.1 | 2.6 | 1.2 | 27.1 | 5 | EfB | EfB | 64 | | | ļ | | | | 1.5 | 3 | 4 | 3.5 | 0.8 | 1.0 | 2 | 2 | 1.3 | 0.8 | | | | | | | | | | | | | 5.7 | Dodge | DnC2 | 9 | 74 | 5.4 | 8 | 13 | 12.3 | 0.9 | 2.9 | 5 | 4 | 3.2 | 0.6 | 9.4 | 10.1 | 19.5 | 8.7 | 6.2 | 4.6 | 26.2 | 5 | DnC2 | DnC2 | 64 | | 40.4 | | D 62 | | | 5.4 | 8 | 14 | 13.2 | 0.7 | 2.9 | 5 | 4 | 3.1 | 0.7 | | | 8.2 | 4.2 | | | 20.4 | 5 | 2.62 | | 64 | | 10.1 | Ringwood | RnC2 | 9 | 39 | 3.6 | 5 | 9 | 8.5 | 0.6 | 2.5 | 4 | 6 | 5.3 | 0.5 | 3.3 | 4.9 | 8.2 | 4.2 | 0.1 | 3.9 | 39.4 | 5 | RnC2 | RnC2 | 64 | | 10.0 | \A/balaa | WD2 | 8% | 01 | 3.6 | 5 | 7 | 6.7 | 0.3 | 2.5 | 4 | 2 | 1.9 | 0.2 | 4.5 | 2.1 | 7.6 | 2.1 | 1.2 | | 22.0 | 2 | WxD2 | W-D2 | 64 | | 10.0 | Whalan | WxD2 | 8% | 81 | 3.0 | 4 | 8 | 7.4 | 0.7 | 2.0 | 3 | 2 | 3.1
1.9 | 0.5 | 4.5 | 3.1 | 7.6 | 3.1 | 1.2 | 3.3 | 33.0 | | WXDZ | WxD2 | 64 | | 9.2 | Ringwood | RnC2 | 9% | 54 | 3.5 | 5 | 10 | 9.4 | 0.5 | 2.4 | 4 | 6 | 5.9 | 0.2 | 3.7 | 5.5 | 9.2 | 4.6 | 2.7 | 1.9 | 17.5 | 5 | RnC2 | RnC2 | 64 | | 9.2 | Killigwood | KIICZ | 970 | 34 | 3.5 | 5 | 8 | 7.5 | 0.7 | 2.4 | 4 | 2 | 2.1 | 0.3 | 3.7 | 3.3 | 9.2 | 4.0 | 2.7 | 1.9 | 17.5 | | RIICZ | KIICZ | 04 | | 16.6 | Dresden | DsC2 | 9% | 31 | 3.4 | 3 | 8 | 8.2 | 0.2 | 2.1 | 2 | 3 | 2.8 | 0.3 | 5.4 | 1.2 | 6.6 | 1.1 | 4.7 | 0.8 | 13.3 | 3 | DsC2 | DsC2 | 64 | | 10.0 | Diesden | DICE | 370 | | 3.4 | 3 | 3 | 3.2 | 0.2 | 2.1 | 2 | 2 | 2.0 | 0.2 | | 1.2 | 0.0 | | 4.7 | 0.0 | 15.5 | | D3C2 | Dicz | | | 9.9 | Plano | PnB | 4% | 56 | 3.4 | 4 | 6 | 5.5 | 0.4 | 2.5 | 3 | 2 | 1.8 | 0.3 | 3.8 | 1.4 | 5.2 | 1.3 | 3.0 | 0.9 | 8.9 | 5 | PnB | PnB | 64 | | J., | 1.00 | | | 1 | 3.4 | 4 | 3 | 3.0 | 0.4 | 2.5 | 3 | 2 | 1.6 | 0.4 | | | - J.L | | 3.0 | | 5.5 | | 15 | 15 | ļ . | | 14.7 | Plano | PnB | 4% | 65 | 1.1 | 2 | 3 | 2.4 | 0.4 | 0.7 | 1 | 1 | 0.7 | 0.3 | 1.8 | 0.9 | 2.7 | 0.7 | 1.0 | 1.0 | 14.7 | 5 | PnB | PnB | 64 | | · | | | | 1 | 1.1 | 2 | 2 | 1.2 | 0.4 | 0.7 | 1 | 1 | 0.3 | 0.4 | | | <u> </u> | | | † | | | | ļ | | | 12.0 | Virgil | VrB | 4% | 30 | 1.3 | 1 | 1 | 1.0 | 0.2 | 1.0 | 1 | 1 | 0.5 | 0.2 | | | 0.5 | | | 0.5 | 6.0 | 5 | VrB | VrB | 65 | | 10.0 | Dodge | DnC2 | 9% | 109 | 0.7 | 1 | 2 | 1.1 | 0.6 | 0.5 | 1 | 1 | 0.3 | 0.6 | | | 0.8 | | | 0.8 | 8.0 | 5 | DnC2 | DnC2 | 66 | | 20.0 | Batavia | BbB | 4% | 57 | 0.7 | 2 | 4 | 1.3 | 2.9 | 0.2 | 1 | 3 | 0.3 | 2.7 | | | 1.2 | | | 1.2 | 24.0 | 4 | BbB | BbB | 64 | | 17.1 | Ringwood | RnC2 | 9% | 68 | 2.2 | 3 | 7 | 6.4 | 0.6 | 1.7 | 3 | 3 | 2.1 | 0.4 | | | 4.5 | | | 4.5 | 77.0 | 5 | RnC2 | RnC2 | 64 | | 1,703.8 | Total Acres | | 65 | Fields | | | | | | | | | | | 64
480.5 acres | 65
12.0 acres | 69
652.0 acres | Average
increase or
decrease in P
loss | 0.9 | Medium
increase or
decrease in P
loss | 0.75 | | | Total Change
in P loss from
combining
practices | 1416.1 |