
Yahara Pride Farms 2016 Phosphorus Reduction Report

Yahara Pride Board of Directors

June 30, 17

Executive Summary

YPF 2016 P reduction report Final June 26, 2017

What the data represents

This report provides the data and summary information for the 37 farms cooperating with the 2016 Yahara Pride Farms (YPF) cost share program. The information provided is based on the difference in predicted phosphorus loss from the adoption of a practice such as strip tillage, low disturbance manure injection, cover crops, headland stacking of manure; or combination of two practices and the continued implementation of a practice for multiple consecutive years. The 2016 data is based off the "SNAP+" plans provided to YPF by the farmers and/or their crop advisors.

In most cases the plans were used as sent, however in a few cases where fields were planned from 2016 forward, the planning period was revised to include past years' data. Crop consultants plan forward to account for changes to the crop rotation and/or farming systems. A challenge facing farmers in the Yahara Watershed is that the factors used to calculate tolerable soil loss were updated in the 2014 – 2015 SNAP+ nutrient management-planning tool. The Natural Resources Conservation Service (NRCS) maintains the soil survey data used by the Revised Universal Soil Loss Equation 2 (RUSLE2) and SNAP+ to estimate sheet and rill soil erosion. In 2014 NRCS began a national update of soil survey data including Tolerable (T) soil loss values and soil erodibility factors (K). The University of Wisconsin Soils Department annually updates the SNAP+ database to reflect the most current NRCS soil survey data. The edits to the SNAP+ soils database will cause changes to occur to some of the year-to-year predicted phosphorus loss values even when no other change to the farming system occurred. Some fields within this database saw tolerable soil loss levels decrease, while others saw an increase in the predicted average rotational soil loss levels due to an increase of the K factor.

Some fields in this data set saw a major change in the 2015 revision in the both tolerable soil loss (T) levels, and in the calculated actual rotational soil loss because the factors used in the SNAP+ program. The change that occurred between 2014 and 2015 were fairly dramatic on certain fields and it is assumed that going forward we will see only minor changes within the SNAP+ program. This stabilization in the program will allow for better year-to-year comparisons of the predicted changes in the risk for phosphorus delivery to the nearest waterbody.

All the data presented in this report are derived from the individual farms nutrient management plan, which takes into account tillage, crop rotations, nutrient applications from both manure and fertilizer, and crop yields. This is the best representation of what is actually happening on the farms that participate in the Yahara Pride Cost Share program. Each farm and field has unique characteristics that influence yields, the tillage system and the risks for sediment and nutrient loss. That is why we see such large variation in losses within this data set.

Summary of phosphorus reductions

Table 1 shows a comparison of the number of farms, acres and phosphorus reductions achieved through <u>strip tillage program</u> from 2013 to 2016.

Strip Tillage Program	2013	2014	2015	2016
Number of farms	3	3	3	3
Number of fields	11	15	20	21
Tillable acres in program	156	253	1,489	917
Range in phosphorus reduction (lbs./acre)	(-0.2) – 2.7	(-0.1) – 2.9	0.1 – 5.6	0.0 - 5.7
Average phosphorus reduction (lbs./acre)	1.44	0.87	0.82	0.89
Total phosphorus reduction (in pounds)	225	220	1,221	703

Table 1 Number of farms, acres and phosphorus reductions through strip tillage program

Over the four years of the strip tillage cost share program there were two years with two fields that showed a negative response to the change in the tillage system. The past three years the reduction in phosphorus loss is extremely consistent averaging around 0.9 pounds per acre.

Table 2 shows a comparison of the number of farms, acres and phosphorus reductions achieved through the **low disturbance manure injection program** from 2013 to 2016.

Low Disturbance Manure Injection Program	2013	2014	2015	2016
Number of farms	11	14	4	7
Number of fields	20	20	32	76
Tillable acres in program	361	841	566	1,203
Range in phosphorus reduction (lbs./acre)	0.1 – 7.6	(-0.1) – 2.2	(-0.6) – 5.9	(- 1.0) – 4.8
Average phosphorus reduction (lbs./acre)	0.99	0.63	1.91	0.88
Total phosphorus reduction (in pounds)	357	530	1,081	1,106

Table 2 Number of farms, acres and phosphorus reductions through the LDMI program

The average reduction in phosphorus loss varies from a low of two-thirds of a pound to almost two pounds. The total predicted reduction in phosphorus loss in 2016 was 1,106 pounds.

There were eight farms that cooperated in the <u>low disturbance deep tillage with the planting of a</u> <u>cover crop program</u> in 2016. These eight farms planted a total of 730 acres with about 378 acres cost shared. The way the tillage systems were reported on these eight farms made it impossible to assess how the changes in tillage affected potential phosphorus loss. Therefore, these farms were credited with reducing phosphorus loss strictly based on the cover crop. Based on the data generated in the combination of practices, we can say that these fields had an average phosphorus reduction of around 2.23 pounds per acre. Subtracting the 1.48 pound average for cover crops from the combined data (2.23) we can assume that the low disturbance deep tillage with the planting of a cover crop generated a savings of 730 acres * 0.75 lbs. / acre = 548 lb. reduction in phosphorus loss. Table 3 shows a comparison of the number of farms, acres and phosphorus reductions achieved through the **cover crop program** from 2013 to 2016.

Year	2013	2014	2015	2016
Farms	20	37	35	37
Fields	80	53	160	290
Acres	2,436	4,732	4,908	5,851
Range in P reduction	(-1.1) to 6.2	(-1.1) to 6.2	- <mark>1.0</mark> to 13.4	(- <mark>1.9</mark>) to 10.7
Average	0.71 lbs / acre	0.78 lbs / acre	1.76 lbs / acre	1.48 lbs / acre
Total P reduction	1,730 lbs	3,691 lbs	6,572 lbs	7,130 lbs

Table 3 Number of farms, acres and phosphorus reductions through the cover crop program

The average reduction in phosphorus loss varies from a low of 0.7 pounds to almost 1.8 pounds with a 2016 average of 1.48. The total predicted reduction in phosphorus loss was 7,130 pounds in 2016.

In 2016 YPF decided to provide two bonus payments for farms that either combined two practices on a field (one practice was always cover crops while the second practice was either strip tillage or LDMI); or implemented practices for more that three years on a field. In 2016 the average predicted phosphorus reduction for combining two practices was **2.23 pounds per acre**. This year's data set contained 35 fields totaling 1,432 acres. Since some of this reduction in phosphorus is included in the individual practice data sets, individual fields were evaluated looking at the difference from the individual practice to the combination of practices.

The data for continuing a practice for three years or longer includes 22 fields and 406.5 acres in 2016. These fields varied in the number of years of a practice continued **but the average reduction in just the last year for fields with 3 years continued implementation of one practice was 1.03 lbs./acre**. The average for multiple years of multiple practices was 0.18 lbs./acre. These data set supports the recommendation that farmers should consider planting cover crops on fields that are suitable for continuous corn silage. In those cases the cover crop provides both a water quality benefit and a soil quality benefit.

	<u>Practice</u>	Average P Reduction	<u>Total</u>	Predicted P Reduction
\triangleright	Strip Tillage	0.89		703 lbs
\triangleright	LDMI	0.88		1,106 lbs
\triangleright	LDDT + cover crop	0.73		548 lbs
\triangleright	Cover Crops	1.48		7,130 lbs
\triangleright	Headland Stacking Manure	2.13		107 lbs
\triangleright	Combined Practices	2.23		1,085 lbs
\triangleright	Multiple Years of Adoption –	1 1.03		297 lbs
\triangleright	Multiple Years of Adoption -	2 0.18		<u>191 lbs</u>
			Total	11,167 lbs

2016 Summary of Predicted Phosphorus Reduction

Introduction

In the past the Yahara Pride Farms (YPF) phosphorus reduction report began with an overview of the cost share programs offered and then went immediately into the data. As we complete the pilot project phase and enter the implementation stage of the Adaptive Management Program there are a few things that need to be stated in this introduction.

First and foremost – Thank you to all the farmers in the Yahara Pride Watershed program for working with Yahara Pride Farms and Yahara WINS to implement practices that reduce the potential for phosphorus loss to the streams and rivers that contribute water to the Yahara Lakes. The farmers in this area continue to be supportive of Yahara Pride Farms and continue to seek alternative farming systems and conservation practices that reduce phosphorus and sediment loss. This report shows how hard each and every one of you works to keep soil and nutrients on your fields and out of our water. **Farmers are the heart and soul of the Yahara Pride Farms program and we thank you!**

Yahara Pride Farms and the farmers in the Yahara Watershed are also indebted to "The Yahara Watershed Improvement Network (Yahara WINs), led by MMSD", which began in 2012 as a fouryear pilot project to reduce phosphorus loads and meet more stringent water quality standards established by the Wisconsin Department of Natural Resources (WDNR). This groundbreaking program employs watershed adaptive management, a strategy in which all sources of phosphorus pollution in an area work together to meet water quality goals. This strategy is more effective and less expensive than the sources working separately on individual solutions. Partners in Yahara WINs include cities, villages, towns, wastewater treatment plants, agricultural producers, environmental groups and others.

Thanks also to the businesses and organizations who provide support (both financial and in-kind), to Yahara Pride Farms. It takes people and money to offer this cost share, certification and outreach and education events, and we wouldn't be able to do it without your support. This farmer-led watershed approach has become a model for others around the state because we have been able to offer programs and events based on your support. Thank you for being an important of the Yahara Pride Farms program.

Finally, thanks to the members of the Yahara Pride Farms board of directors and all the staff who have worked with us over the past 4-5 years. Your guidance and support have shaped this program and we cannot thank you enough for the time you committed to this organization.

Yahara Pride Farms Inc. Board of Directors

Jeff Endres - Chair	Art Meinholtz
Bob Uphoff, Vice Chair	Dave Fahey
Chuck Ripp - Secretary	Dave Taylor
Scott Mayer – Treasurer	Mike Gerner
Will Hensen	Rob Klink

Programs offered in 2016

During 2016 the Yahara Pride Farms (YPF) board of directors continued operating and implementing a number of agricultural conservation programs designed to reduce the loss of phosphorus within the Yahara Watershed. There were five major incentive programs offered within the watershed in 2016 including:

- 1. Strip tillage,
- 2. Low Disturbance Manure Injection,
- 3. Low Disturbance Deep Tillage and Cover Crop,
- 4. Cover Crop Assistance, and
- 5. Headland Stacking of Manure / Composting

In addition to these five programs, YPF offered bonus payments to farms that implemented a combination of practices on the same field (two or more practices). They also provided a bonus payment on fields where a practice had been implemented for greater than three years consecutive years. Each of these programs offers unique benefits both from a phosphorus reduction standpoint as well as educational and confidence/trust building within the watershed.

This report provides an update on the number of acres, fields and farms involved in each of these programs. The Wisconsin Phosphorus Index (P Index) is a model that estimates the pounds of phosphorus prevented from reaching the nearest waterbody. The nearest waterbody would in most cases be streams and rivers. These estimates of the pounds of phosphorus prevented from reaching a waterbody can then be used (with the appropriate delivery factors) to estimate the pounds of phosphorus prevented from entering the Madison chain of Lakes.

1. Strip Tillage:

Strip-tillage is a conservation system that offers an alternative to no-till, full-till and minimum tillage. It combines the soil drying and warming benefits of conventional tillage with the soil-protecting advantages of no-till by disturbing only the portion of the soil that is to contain the seed row (similar to zone tillage). Each row that has been strip-tilled is usually about eight to ten inches wide. The system still allows for some soil water contact that could cause erosion, however, the amount of potential erosion on a strip-tilled field would be lower than compared to the amount of erosion on an intensively tilled field. Compared to intensive tillage, strip tillage saves considerable time, fuel and money. Another benefit is that strip-tillage conserves more soil moisture compared to intensive tillage systems. However, compared to no-till, strip-tillage may in some cases reduce soil moisture and increase the potential for soil loss.

Strip-tillage is performed with a special piece of equipment and the YPF's strip till program originally assisted with the rental of a strip till machine to determine if this farming system fit into a farms overall farming system and management. In the first two years of the Yahara cost share program a

unique partnership was formed between the Yahara Pride Farms Inc. and Kalscheur Implement. Since 2015, Kalscheur Implement was no longer able to provide a strip tillage machine, so the YPF's board dropped the rental of a machine and approved a payment of \$15/acre for up to 50 acres for farmers wanting to experiment with strip tillage (maximum payment of \$750 per farm).

The data contained in table 4 (page 8) shows the soil types, slope, soil test phosphorus and the changes in the estimated annual phosphorus index from all fields that were tilled using a strip till machine. There were four farms that cooperated in the strip tillage program and these operations were spread out around a wide area of the Yahara watershed. As can be seen in the table, strip tillage was conducted on 21 different fields with a large variation of soil types, soil test and slopes. This year the number of acres planted using a strip tillage system was about 917.

Running the SNAP calculations for each field is important because as demonstrated in the table, assuming that phosphorus reductions directly correspond to slope is not an accurate assumption. Based on the information gathered over the four years of this project, the factors that influence phosphorus loss (or reductions in phosphorus loss) include slope, tillage prior and after strip tillage, soil test levels, manure management program and the crop rotation. All of these factors play a large role in predicted phosphorus loss.

The 2016 strip tillage program was conducted on 916.7 acres in the Yahara Watershed. However, the vast majority of these acres were not cost shared by the Yahara Pride Farms program.

\triangleright	Total acres stripped tilled	916.7
	• YPF cost share acres	165.0

Acres of strip tillage done without financial assistance = 751.7 acres

An evaluation of the estimated phosphorus savings by changing farming systems from what the farm was currently using to strip tillage shows a wide range of data. Switching from whatever the current tillage system was to strip tillage had a <u>range in the reduction of phosphorus loss from 0.0 to 5.7 lbs</u> <u>phosphorus per acre</u>. For 2016 the data shows that in 19 of the 21 fields, switching from the old farming system to strip tillage reduced phosphorus loss.

As demonstrated in table 4, there are times when switching to strip-tillage had a very minor affect on phosphorus loss. Most of the fields with minor reductions in phosphorus loss had slopes of 4% or less. On other fields and conditions the change to strip tillage had a dramatic affect, the three fields with the greatest reduction in predicted phosphorus loss had slopes of 9%, 9% and 16%. A closer evaluation indicates that many times changing tillage systems can reduce particulate phosphorus loss while increasing soluble P losses. The challenge is to determine when a change in the tillage system has the greatest positive impact on water quality.

22316.7 114.0Acres 99.0 95.7 55.0 39.1 38.4 30.0 28.4 27.5 121.0 55.1 26.7 9.1 8.4 8.4 6.8 5.9 21 57.0 34.0 33.7 23.5 **Total** Acres StitCharles Wacousta Stitcharles Wacousta StTCharles Stitcharles Dresden Griswold Dresden Whalan Dresden Dresden Kidder⊡ Soillrype Whalan Fields Plano Kidder Kidder Whalan Batavia Plano Virgil 2016PYPF5tripTillage Soil[®] Symbol WxD2 ΡIΑ SaB DsB GwC PnB KdD2 KeB2 BbB ScB Maximum Minimum Average? Soil?Test? Slope 4% 16%4% 16% 4% %6 9% %6 4% 4% 9% 4% 1%4% %6 1%4% 3% 2% 2% 4% Soil? Test??? PPM 167.0 13.0 58.7 47 118 40 63 113 40 27 17 125 49 47 83 167 13 90 20 46 17 65 15 30 Rotat.1 Ν σ ω л ω ы **Traditional** Tillage Annua I∄PI Ν μ Ν σ Part.? 2.2 0.3 1.8 0.7 0.3 6.6 4.3 1.6 1.3 4.9 0.7 2.6 0.1 0.7 2.8 2.5 1.4 4 Soluble 0.2 0.2 0.4 0.2 0.2 0.2 0.1 0.3 0.6 1.2 0.2 2.3 0.2 2.5 0.5 1.60.2 ь 0.4 1.1Rotat. Pl 0 4 ъ 4 н Ν ω ω Annua I∄PI 0 4 Ь л Ν 0 Ν N StripIllage Part.© 1.4 0.2 0.9 0.8 0.8 0.2 ω σ 0.2 0.3 0.5 1.1з. 6 1.2 0.6 2.1 1.7 1.6 н 0 Soluble[Pl? 0.2 0.2 0.1 0.3 0.3 0.4 0.7 0.2 0.9 0.4 0.4 1.2 1.4 1.10.9 1.1 1.1Ν Change/Acre 0.89 change師er^a acre Annual P? Annual Average? 5.7 0.2 0.8 0.1 0.5 0.8 0.6 5.7 0.3 0.3 0.1 0.4 0.8 0.0 3.2 0.0 0.3 1.5 0.9 Pounds changeffor² field Maximum mmmm03.4 Phosphorus **Reduction** Minimum Ann ual 🖓 🖻 171.0 Total? 91.2 38.6 45.6 24.2 9.9 86.1 27.5 23.5 0.0 90.9 0.0 7.1 15.4 27.2 8:30 8:30 16.0 2.5 12.6 0.7 υ ω Tolerable 50il fieldIntons Lossforthe сл ω сл ш Ν ω ഗ σ Ν ω Calculated? Soil@ossfor? Without Strip #Fields@lecreasing&oil@oss #Fields@ncreasing含oil@oss #ields3with3noTchange# tons/acre 1.8 the field? Tillage Actual? 0.7 1.33.7 0.2 0.4 4.6 0.9 2.8 1.7 1.5 1.3 4 J 2.5 2.5 1.6 Maximum Minimum change@n翻 Soil@Loss Soillossfor Calculated? With Strip? tons/acre the field? Average? Actual Tillage 0.4 1.4 0.8 0.8 2.3 1.6 0.8 ω ω 0.8 1.4 0.9 0.9 2.9 0.2 2.5 2.5 Ν 1.2 1.8 1.5 Change@nt5oi Strip Tillage Lossfrom? tons/acre -0.65 0.1 -2.9 0.1 0.1 -0.9 -0.2 -2.9 0.1 -1.3 -2.0 -2.8 -2.1 -0.8 13 -0.1 0.1 -0.1 -0.4 -0.2 -0.3 4 4 0 0 0 0 Stitcharles StTCharles StTCharles StTCharles Wacousta Critica 15 oil? Dresden Wacousta Whalan Virgil Dresden Kidder Stream≅ Reach⊠ 62 63 64 65 65 66 Dresden Griswold Whalan Dresden Whalan Plano Kidder Kidder Acresan Plano Batavia Total used Soilloymbol WxC2 VrB SaB Wa DsC2 916.7 425.0 0.0 491.7 0.0 WxC2 ScB DsB KeBP Wa DsC2 DsB GwC PnB DdD2 KeB2 WxD2 BbB ScB SaB ΡIΑ Soilaused 53.64% 46.36% WxC2 WxC2 DsC2 WxD2 SaB DsB Gwc KeB2 DdD2 ΡnΒ DsC2 BbB ScB Wa Wa ScB SaB VrB DsB ΡIΑ KeB Streamileac located field Yahara 🛙 69 69 64 64 69 64 64 64 64 64 64 64 69 64 64 64 69

Table 4 Changes in P loss from strip tillage

Table 5 shows the difference between the changes in particulate phosphorous loss (first column) and soluble phosphorous loss (third column). As you can see in each field particulate phosphorus loss decreased when adopting strip tillage, with changes ranging from 0.1 - 5.7 pounds per acre. Changes in soluble phosphorus loss ranged from (-0.5) to 0.5 with:

- 10 of 21 being negative (increasing losses),
- 6 of 21 being zero (no affect), and
- 5 of 21 being positive (decreasing losses).

For the 2016 strip tillage program:

- ✓ Overall the average reduction in phosphorus loss was <u>0.89 pounds</u>.
- ✓ For the 916.7 acres in the program the risk of phosphorus loss was <u>reduced 703.4 pounds</u> by adopting strip tillage.
- ✓ The cost share program for strip tillage was \$15 / acre for less than or equal to 50 acres.
- change@per2 change^{ff}or[®] change@per2 change[®]for[®] acre field acre field 0.3 10.1 -0.3 -10.1 0.4 3.6 -0.4 -3.6 0.1 9.9 0.0 0.0 0.2 1.4 -0.1 -0.7 0.0 0.2 24.2 0.0 0.2 1.7 0.1 0.8 -13.8 0.8 22.0 -0.5 0.6 14.1 -0.3 -7.1 0.1 3.8 0.3 11.5 27.5 0.5 0.0 0.0 0.1 2.7 0.5 13.4 19.6 0.5 3.9 0.1 0.7 0.0 0.0 38.6 0.9 30.6 -0.1 -3.4 0.9 51.3 -5.7 -0.1 0.8 91.2 0.0 0.0 1.0 95.7 -0.1 -9.6 1.1 6.5 -0.2 -1.2 1.3 10.9 0.2 1.7 3.3 93.7 -0.1 -2.8 5.7 171.0 0.0 0.0 0.94 Average -0.05 Average Total P? Total₽ Reduction mmm730.1 Reduction -1111126.6

Annual P?

Annual P

Annual P?

Annual P?

- ✓ Three cooperators had more than 50 acres, so their payment was \$750 while the fourth cooperator had 15 acres (\$225).
- ✓ At \$15/acre with phosphorus reduction of 0.89 pounds per acre the cost per pound of P loss reduction was \$16.85.

Switching from no-till to strip-till may increase the potential for particulate phosphorus loss while having minimal impact on soluble phosphorus losses (depending on manure applications). Considering that strip tillage normally replaces more aggressive tillage (chisel plowing, cultivation, etc.), it seems reasonable that most of the advantage to changing to this tillage system will be in the reduction of soil loss.

Looking at the data based on phosphorus reduction for each reach of stream is in table 6 (below).

Stream Reach	Acres	Percentage of Acres	Total Phosphorus Reduction
64	491.7	53.64%	505.3 pounds
69	425.0	46.36%	198.1 pounds

Table 6 Phosphorus reductions by stream reach

Table 5 Change in Particulate verses Soluble P

2. Low Disturbance Manure Injection:

The northern portion of the Yahara Watershed is an area with high concentrations of livestock and therefore a great deal of manure. Manure is either incorporated into the soil using a number of different tillage implements (chisel plow, disk, or field cultivator) or it is applied to the soil's surface and not incorporated. Surface applications of manure have been shown to increase nitrogen and phosphorus runoff to rivers and streams, while injection/incorporation places manure below the surface where it doesn't interact with runoff water during storms. However, on steep slopes injection/incorporation of manure can make the soil more susceptible to erosion.

For many livestock operations in the Yahara, manure incorporation is a standard practice. Traditional incorporation methods move a great deal of soil and increase the potential for soil erosion. Field evaluations conducted by the Yahara Pride Certification Program during the spring of 2013 and 2014 identified reducing soil erosion as a high priority. Since much of the tillage was conducted to incorporate manure, a system of incorporating manure with minimal soil disturbance needed to be implemented in the watershed. Minimum disturbance equipment also works well with no-till farming systems and allows farmers to experiment with new methods of preserving nitrogen, phosphorus and potassium to save on fertilizer costs. In addition to the economic benefits, improved manure utilization benefits the environment by ensuring efficient nutrient use and improving soil and water quality.

Yahara Pride Farms was one of the first groups in Wisconsin to experiment with vertical manure injection (VMI). VMI is a farming system that incorporates manure into the soil with minimal soil disturbance. Since YPF began using VMI there have been a number of companies that have made equipment to incorporate manure with low soil disturbance. These systems often use a single large fluted coulter to cut crop residue and open a channel in the soil surface for manure placement. Significantly less soil disturbance occurs with this process than with either chisel or chisel/disk manure incorporation systems. Since 2013, YPF has been encouraging farmers to try low disturbance manure injection (LDMI) systems. Dane County now offers cost share to farmers and custom manure applicators to upgrade their manure application equipment to LDMI.

In 2016 the manure application program includes any manure application equipment defined as low disturbance (Low Disturbance Manure Injection – LDMI). Participants in the cost share program were either farmers who had purchased LDMI equipment, or hired a custom operator who had LDMI equipment. In 2016, YPF had **seven farms (up from 4 in 2015)** participate in the LDMI program. The cost share program was modified to provide \$20 per acre with a 100-acre maximum payment (\$2,000 maximum). The seven farms used the equipment on **76 separate fields** (up from 32), which **totaled 1,203 acres** (up from 566 tillable acres). There was additional manure applied using this equipment, but some of that land was out of the Yahara Watershed. The data contained in table 7 are from the fields within the Yahara Watershed.

50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	10	17	16	15	14	13	11	10	9	∞	7	6	л 4	Δ	ω	2	1	
15.2	38.8	11.5	29.9	11.0	23.5	18.0	6.4	10.3	12.2	9.8	22.7	22.7	17.1	14.9	19.5	16.5	47.9	25.5	28.1	20.3	21.3	12.0	13.9	7.3	14.5	4.5	9.8	8.0	4 2	15.2	12.4 13.0	19.2	6.7	14.0	10.0	16.0	28.0	14.8	16.8	12.2	31.0	15.2	7.9	8 1	Acres			Þ
Ring	Pla	Gris	Pla	Ring	Pla	Kid	Pla	Plano	Do	Tro	Ring	St Charles	Do	Plano	Plano	Pla	Plano	Pla	Dodge	Pla	Gris	Pla	Tro	Pla	Ring	PI	PI	Warsaw	2	Plano	Plano	Plano	Pla	Kid	Tro	Vii Pia	Plano	Hunt	St Ch	St Charles	Pla	Pla	Gris	Grie	Soil			
Ringwood	_	Griswold		đ		+	+	_	Dodge [-	-				_	_	4	-	_		۵.	_		-	ā.	Plano	+	-	4	+	+	┝			+	Virgil	┢	Huntsville			+	_	Griswold	+	Soil Type			
RnB	PnB	GwD2	PnB	RnC2	PnB	KdC2	PnB	PnB	DnC2	TrB	RnB	ScB	DnC2	PnC2	PnB	PnB	РоВ	PnB	DnB	PoA	GwB	Ров	TrB	РоВ	RnC2	Ров	Ров	WrB	DnC2	PnB	PnB	PnB	PnB	KdC2	ΤrΒ	Vrв	PnB	HuB	ScB	ScB	PnB	PnB	GwD2	GWD3	Soil Symbol			0
4%	4%	15%	16%	9%	9%	9%	28%	16%	9%	9%	9%	9%	28%	9%	8%	8%	4%	9%	9%	4%	9%	4%	4%	9%	%6	4%	4%	4%	9%	9%	9%	4%	4%	9%	4%	4% 3%	4%	4%	4%	4%	4%	4%	16%	16%	Slope		2016 Pho	
45	84	53	76	96	96	82	66	106	62	108	80	43	86	116	84	79	84	74	27	60	48	210	113	115	132	96	170	177	36	51	36	48	86	91	128	ь4 101	90	59	53	75	74	68	27	21	Soil Test P PPM		2016 Phosphorus Report - LDMI	m
2	2	ω	8	ω	ы	2	б	4	6	ω	6	5	ы	4	7	ω	ъ	2	7	ъ	6	∞	7	б	∞	6	∞	∞ I	-	2	μu	4	4	1	2	2 3	4	1	1	1	1	1	2	_	Rotat. Pl		Report - L	G
2	2	л	11	ω	4	2	9	4	2	4	3	б	7	з	6	4	7	ω	6	ო	∞	11	∞	11	15	6	12	10	J	ω	ე თ	, ₁	∞	1	ω	2 2	2	2	1	1	Ľ	1	ωr	2	Annual PI	Without LDMI	DMI	т
1.7	1.8	4.9	10.8	2.3	ω.8	1.3	8.6	4	1.3	3.4	2.6	4.7	6.5	2.6	5.2	3.9	6.2	2.6	5.4	5.1	7.5	9.7	7.8	10.2	14.4	л.	10.5	9.5	14	2.5	2.8	6.4	7.8	0.3	2.6	1.4	1.8	1.4	0.8	0.8	0.7	0.7	2.4	2 2	Part. S	t LDMI		-
0.3	0.3	0.2	0.4	0.4	0.5	0.2	0.4	0.3	0.3	0.5	0.5	0.3	0.6	0.4	0.5	0.5	0.4	0.4	0.2	0.3	0.2	1.1	0.6	0.5	0.6	0.6	1.1	н ⁹	04	0.5	0.2	0.3	0.6	0.3	0.6	0.2	0.3	0.2	0.1	0.2	0.2	0.2	0.1	01	Soluble PI			۔ ح
2	2	ω	7	ω	л	2	ო	ω	6	ω	6	<i>ъ</i>	л	з	7	ω	4	2	6	л	6	∞	7	6	∞	л	7	00 H		2 0	- ω	4	4	0		н и ———	4 4	1	1	1	1	1	⊢ ,		Rotat. / PI			-
2	2	4	9	2	4	11	7	2	2	2	з	4	7	1	5	4	6	ω	л	л	7	10	∞	_		6	11	10	~	ωξ	-1 Π	6	00	0			2	1	1	1	1	1	ı د		Annual PI	With LDMI		Z
1.4	1.3	4.1	8.1	1.8	3.4	0.9	6.5	1.5	1.2	1.8	2.8	4	6.1	0.9	4.3	3.5	5.4	2.1	4.7	4	6.1	8.7	6.8	9.1	13.2	ч	9.2	8.4	16	1.9	2.3	5.4	6.8	0.1	1.1	1.3 0.7	1.4	1	0.5	0.5	0.5	0.5	0.6	90	Part. S PI	DMI		z
0.3	0.4	0.3	0.5	0.5	0.5	0.4	0.3	0.4	0.3	0.4	0.4	0.2	0.5	0.4	0.6	0.7	0.6	0.6	0.4	0.5	0.4	1.6	0.9	0.8	0.9	9.9	1.6	1.5	90	0.7	о л 0.3	0.4	0.9	0.3	0.6	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0		Soluble Pl			0 70
0.3	0.4	0.7	2.6	0.4	0.4	0.2	2.2	2.4	-0.3	2.4	-0.1	0.8	0.5	1.7	0.8	0.2	0.6	0.3	0.5	0.9	1.2	0.5	0.7	0.8	0.9	0.5	0.8	0.6	-0 4	0.4	1.4	0.9	0.7	0.2	1.5	0.3	0.3	0.3	0.1	0.2	0.1	0.1	1.9	17	Annual P change per acre			ρ
4.6	15.5	8.1	77.7	4.4	9.4	3.6	14.1	24.7	-3.7	23.5	-2.3	18.2	8.6	25.3	15.6	3.3	28.7	7.7	14.1	18.3	25.6	6.0	9.7	5.8	13.1	2.3	7.8	4.8	-17	<u>10:2</u> 6.1	5.0	17.3	4.7	2.8	15.0	8.4 11.2	8.4	4.4	1.7	2.4	3.1	1.5	15.0	13.8	Annual P change for field			R
5	л	4	5	5	5	ъ	ъ	б	б	5	5	5	5	5	5	5	4	5	5	4	ω	4	4	л	σ	б	4	ω	л	м (л о	і <i>о</i>	б	5		თ и	т <i>о</i> т	5	б	ъ	ы	л	4.	4	Tolerable Soil Loss for the field	Withc		T
1.5	2.0	2.3	7.2	2.7	4.4	1.3	6	3.2	5.5	2.5	5.3	3.7	4.3	2.7	6.3	3.3	4.4	9.6	6.2	5.2	6.8	5.2	6.2	8.3	6.1	3.2	3.3	2.7	ر 3	4.8	ς 1	3.5	3.2	0.5	1.6	1	3.2	1.2	1	0.6	0.5	0.5	4	1 7	il Calculated Soil loss for the field	Without LDMI		c
5	л	4	5	5	л	ы	ъ	5	л	ъ	5	5	л	5	5	5	4	5	5	4	ω	4	4	ъ	σ	ъ	4	ω	л	<i>о</i> и	л о		5	5		<i></i> ч	т <i>о</i> т	5	თ	σ	ы	σ	1.9	Δ	Tolerable Soil Loss for the field	With		<
1.5	2.0	2.1	6.6	2.6	4.3	1.2	5.6	2.8	5.5	2.1	5.6	3.7	4.2	2.3	6.1	3.2	4.3	9.4	6.1	5	6.5	σ	6.1	8.1	6.3	3.2	3.2	2.6	л Л	4.5	2.9	а 3.3	3.1	0.2	0.6	0.5	3.1	1.1	1	0.6	0.5	0.5	0.9	9.0	l Calculated Soil loss for the field	With LDMI		×
Plano	Plano	Griswold	Mchenry	Ringwood	Ringwood	Kidder	Kidder	St Charles	Dodge	Ringwood	Dodge	Mchenry	Dodge	Mchenry	Griswold	Griswold	Plano	Plano	Mchenry	Plano	Dresden	Plano	Plano	Plano	Plano	Plano	Plano	Warsaw	Dodge	Dodge	Plann	Plano	Plano	Kidder	Troxel	Virgil	Plano	Huntsville	St Charles	St Charles	Plano	Plano	Griswold	Griswold	Critical Soil			X Y
PnB	PnB	GwD2	MdC2	RnC2	RnC2	KdC2	KrE2	ScD2	DnC2	RnC2	DnC2	MdC2	DnC2	MdC2	GWC	GWC	PoB	PnC2	MdC2	РоВ	DsC2	РоВ	РоВ	PnC2	PnC2	РоВ	РоВ	WrB	DnC2	DnC2	RnC2	PnB	PnB	KdC2	TrB	Рпв VrB	PnB	HuB	ScB	ScB	PnB	PnB	GwD2	GWD3	Soil Symbol			Z
PnB	PnB	GwD2	MdC2	RnC2	RnC2	KdC2	KrE2	ScD2	DnC2	RnC2	DnC2	MdC2	DnC2	MdC2	GWC	GWC	РоВ	PnC2	MdC2	РоВ	DsC2	РоВ	РоВ	PnC2	PnC2	РоВ	РоВ	WrB	DnC2	DnC2	PnC2	PnB	PnB	KdC2	TrB	Рпв VrB	PnB	HuB	ScB	ScB	PnB	PnB	GwD2	GWD3	Soil used			AA
64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	66	66	66	64	64	64	64	64	64	64	64	Yahara Stream Reach field is located			A AC

Table 7 Changes in phosphorus loss from the adoption of low disturbance manure injection

06 68	000	87	86	85	84	83	82		81	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	54	53	52	51	ω	2	1	
						1,202.8			74		1.6	18.4	4.9	2.1	5.4	5.3	4.1	4.7	4.5	9.9	20.7	10.0	14.0	14.0	31.1	4.0	22.5	2.9	24.7	10.0	18.2	19.7	35.0	34.0	26.0	20.0	17.5	11.8	Acres			A
		T				Total Acres			Fields		Whalan	Seaton	Mchenry	Seaton	Kidder	Dodge	Mchenry	Mchenry	Mchenry	Plano	Mchenry	Plano	Elburn	Plano	Ringwood	Kidder	Radford	Kidder	Troxel	Rockton	Griswold	Ringwood	Plano	Ringwood	Ringwood	Ringwood	Dodge	Ringwood	Soil Type			в
		┢	t			St			\vdash		WxD2	SmB	MdC2	SmC2	KdD2	DnC2	MdD2	MdD2	MdD2	PnB	MdD2	PnB	EfB	PnC2	d RnC2	KrE2	RaA	KrE2	TrB		-		+	H RnC2	-		DnC2	d RnC2	Soil Symbol			0
		T	ſ	Minimum	Maximum		JOILLESLE	Average			12%	12%	12%	%6	12%	%6	%6	%6	%6	4%		2%	3%	%6	%6	28%	2%	12%	2%	21%	4%	8%	9%	%6	15%	%6	9%	%6	Slope		2016	D
		┢		m 14.0	m 210.0			e 71.59			27	37	25	32	25	72	23	29	55	56	56	92	69	82	75	57	100	76	131	55	42	56	88	14	14	56	15	20	Soil Test P PPM		2016 Phosphorus Report - LDMI	
		İ	İ						İ		2	ω	1	2	2	2	2	2	4	6	2	5	6	ъ	б	4	∞	ω	٦	2		<u>ب</u>	ا ر	→	1 2	ω	2	4	Rotat. Pi		s Report -	Б
			ſ						ſ		1	2	0	1	1	2	1	2	3	4	2	4	4	ы	12	ъ	9	4	9	2	1	<u>ы</u> (ω I	~ u	v 2	ц	4	з	Annual Pl	Withou	LDMI	т
											0.3	1.8	0.3	1.2	1.1	1.3	1.2	1.2	2.5	2.8	1.8	2.3	2.4	3.6	10.1	4.7	6.5	2.6	8.0	1.3	0.7	0.6	2.9	1.7	2.1	0.5	3.5	2.6	Part. Pl	Without LDMI		-
											0.2	0.4	0.1	0.2	0.2	0.6	0.3	0.3	0.5	1.1	0.5	1.3	1.4	1.1	1.5	0.8	2.7	1.0	1.4	0.7	0.8	0.2	0.4	0.1	0.2	0.4	0.2	0.1	Soluble PI			ے ح
											2	з	1	2	2	2	2	2	4	6	2	4	6	л	4	ω	7	ω	6	2	1	<u>ы</u> (5	F		ω	2	ω	Rotat. / Pl			F
											1	2	0	1	ц	ц	ц	4	З	2	ц	2	2	ω	7	ω	ъ	2	6			<u>ы</u> (ω		<u> </u>		2	2	Annual PI	With LDMI		≤
											0.7	1.7	0.2	0.8	0.8	1.1	1.0	1.1	2.3	1.8	1.4	1.6	1.7	2.2	6.3	2.6	4.4	1.6	5.2	1.0	0.4	0.4	2.5	1.3	1.6	0.5	1.7	1.8	Part. S Pl	DMI		z
			ļ						ļ		0.1	0.2	0.1	0.2	0.2	0.4	0.1	0.2	0.3	0.2	0.1	0.5	0.5	0.4	0.5	0.2	1.0	0.3	0.8	0.2	0.2	0.2	0.4	0.1	0.1	0.3	0.1	0.1	Soluble PI			0 7
			-0.4	4.8		0.88	Change/Acre	Average Annual P			-0.3	0.3	0.1	0.4	0.3	0.4	0.4	0.2	0.4	1.9	0.8	1.5	1.6	2.1	4.8	2.7	3.8	1.7	3.4	0.8	0.9	0.2	0.4	0.5	0.6	0.1	1.9	0.8	Annual P change per acre			ρ
			Minimum	Maximum		1,105.7	Reduction	Total Phosphorus			-0.5	5.5	0.5	0.8	1.6	2.1	1.6	0.9	1.8	18.8	16.6	15.0	22.4	29.4	149.3	10.8	85.5	4.9	84.0	8.0	16.4	3.9	14.0	17.0	15.6	2.0	33.3	9.4	Annual P change for field			R
											ъ	ы	ъ	ъ	л	л	л	л	5	б	б	б	л	ы	л	5	5	б	б	2	м	<i>с</i> ,	υ U	u с	n 4	ъ	5	б	Tolerable Soil Loss for the field	With		T
# Fields dec	# Heids W	# Fields inci		Greatest dec	Greatest inc						2.0	2.5	1.1	2.0	1.9	1.3	1.2	1.2	2.2	4.2	1.8	2.1	3.2	3.4	3.4	4.0	2.9	2.1	3.2	1.4	0.5	0.7	5.0	1.9	2.0 1 c	3.1	2.5	2.9	il Calculated Soil loss for the field	Vithout LDMI		
# Fields decreasing soil loss	# Fields with no change	# Fields increasing soil loss		Greatest decrease in soil loss	Greatest increase in soil loss		Soil Loss	Average change in			5	5	S	5	л	л	л	5	5	5	5	5	5	л	ъ	5	5	5	5	2	л	σ,	лI		n 4	ъ	5	5	Tolerable Soil Loss for the field	With		<
38	3 6	11		s 0.2				3.04			2.3	2.6	1.1	2.1	2.1	1.3	1.2	1.2	2.3	4.3	2	2.1	3.2	3.4	3.4	4	2.9	2.1	3.2	1.5	0.5	0.6	5.0	1.9	1.9	3.1	1.6	2.5	Calculated Soil loss for the field	With LDMI		×
Iotal	- 09	66	65	64	63	62		Acres in			Whalan	Kidder	Kidder	Seaton	Kidder	Mchenry	Mchenry	Mchenry	Mchenry	Plano	Mchenry	Plano	Elburn	Plano	Ringwood	Kidder	Radford	Kidder	Troxel	Rockton	Griswold	Griswold	Ringwood	Ringwood	Griswold	Ringwood	Dodge	Ringwood	Critical Soil			×
1,202.8		40.0	0.0	1,162.8	0.0	0.0		-			WxD2	KdD2	KdD2	SmC2	KdD2	MdD2	MdD2	MdD2	MdD2	PnB	MdD2	PnB	EfB	PnC2	RnC2	KrE2	RaA	KrE2	TrB	RoD2	GwB	GWC	RnC2	RnC2	GwD2	RnC2	DnC2	RnC2	Soil Symbol	Π		Z
		3.44%		96.67%							WxD2	KdD2	KdD2	SmC2	KdD2	MdD2	MdD2	MdD2	MdD2	PnB	MdD2	PnB	EfB	PnC2	RnC2	KrE2	RaA	KrE2	TrB	RoD2	GwB	GwC	RnC2	RnC2	GwD2	RnC2	DnC2	RnC2	Soil used			AA
											64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	Yahara Stream Reach field is located			A AC

Table 7 cont. Changes in phosphorus loss from the adoption of low disturbance manure injection

The estimates for the reductions in phosphorus loss were conducted using crop rotation, tillage practices and manure application data provided by farmers and their crop consultants in the watershed.

Table 7 (pages 11 - 12) contains the SNAP data collected from these farms and shows the information for all of the cooperating farms. This is a significant increase in acres over what was done in 2015. There is still significant interest in using this equipment and over the past few years a few farmers and custom operators have purchased the equipment for use within the watershed. The average reduction in the risk of phosphorus loss for the **LDMI program was 0.88 pounds of P per acre**, **with a range in reduction from (-1.0) to 4.8 pounds.**

As with strip tillage the question that arises is how do the reductions in particulate verses soluble P compare? Table 8 on page 14 shows the differences in particulate verses soluble P loss for the 76 fields in the program. The as demonstrated in the data, the vast majority of phosphorus reduction comes from particulate losses (93%).

Looking at the reductions of particulate phosphorus loss (table 8) contains the following information:

- 1 field with a (-0.4) change in particulate P loss,
- 2 fields with a (-0.2) change in particulate P loss,

(5.4% of total fields)

(2.7%)

- 1 field with a 0.0 change in particulate P loss,
- 20 fields with a 0.1 -0.4 change in particulate P loss (27% of total fields),
- 22 fields with a 0.5 0.9 change in particulate P loss (29.7% of total fields), and
- 28 fields with \geq 1.0 change in particulate P loss (37.9% of total fields).

Looking at the reductions of soluble phosphorus loss (table 8) contains the following information:

- 3 fields with a (-0.5) change in soluble P loss, (4.1%)
 5 fields with a (-0.3) change in soluble P loss, (6.8%)
 10 fields with a (-0.2) change in soluble P loss, (13.5%)
 13 fields with a (-0.1) change in soluble P loss, (17.6%)
 14 fields with a 0.0 change in soluble P loss, (18.9%)
 18 fields with a 0.1 -0.4 change in soluble P loss, (24.3%)
 9 fields with a 0.5 0.9 change in soluble P loss, (12.2%)
- 2 fields with ≥ 1.0 change in soluble P loss.

A review of the data in table 7 shows that the overall affect of implementing LDMI equipment produced an **average reduction in predicted soil loss of 0.16 tons/acre**. Of the 76 fields in the program 11 saw increases in predicted soil loss, 25 had no change and 40 were predicted to have less soil loss with soil loss decreases ranging from 0.1 to 3.1 tons per acre. These losses were highly dependent on the slope of the field and the application methods replaced by LDMI.

Table 8 Change in Particulate verses soluble phosphorus losses with LDMI for each field

201	6*Phosphor	u	s*Report*=1LDN	ЛІ				
Particulate* Annual*P* change*per* acre	Annualや* change*for field		Soluble* Annual*P* change*per* acre	Annualや* change*for field				
1.6	13.0		0.1	0.8				
1.8	14.2	1	0.1	0.8				
0.2	3.0		=0.1	=1.5				
0.2	6.2		=0.1	=3.1				
0.3	3.7		=0.1	=1.2				
0.3	5.0		=0.2	=3.4				
0.4	5.9		=0.1	=1.5				
0.7	11.2		0.0	0.0				
1.5	15.0		0.0	0.0				
0.2	2.8		0.0	0.0				
1.0	6.7		=0.3	=2.0				
1.0	19.2		=0.1	=1.9				
0.5	6.2		=0.1	=1.2				
1.5	19.5		=0.1	=1.3				
0.6	9.1		=0.2	=3.0				
=0.2	=0.8		=0.2	=0.8				
1.1	8.8		=0.5	=4.0				
1.3	12.7		=0.5	=4.9				
0.8	3.6		=0.3	=1.4				
1.2	17.4		=0.3	=4.4				
1.1	8.0		=0.3	=2.2				
1.0	13.9		=0.3	=4.2				
1.0	12.0		=0.5	=6.0				
1.4	29.8		=0.2	=4.3				
1.1	22.3		=0.2	=4.1				
0.7	19.7		=0.2	=5.6				
0.5	12.8		=0.2	=5.1				
0.8	38.3		=0.2	=9.6				
0.4	6.6		=0.2	=3.3				
0.9	17.6		=0.1	=2.0				
1.7	25.3		0.0	0.0				
0.4	6.8		0.1	1.7				
0.7	15.9		0.1	2.3				
=0.2	=4.5		0.1	2.3				
1.6	15.7		0.1	1.0				
0.1	1.2		0.0	0.0				
2.5	25.8		=0.1	=1.0				
2.1	13.4		0.1	0.6				
0.4	7.2		=0.2	=3.6				
0.4	9.4		0.0	0.0				

201	.6 Phosphor	us Report - LDN	MI
Particulate Annual P change per acre	Annual P change for field	Soluble Annual P change per acre	Annual P change for field
0.5	5.5	-0.1	-1.1
2.7	80.7	-0.1	-3.0
0.8	9.2	-0.1	-1.2
0.5	19.4	-0.1	-3.9
0.3	4.6	0.0	0.0
0.8	9.4	0.0	0.0
1.8	31.5	0.1	1.8
0.0	0.0	0.1	2.0
0.5	13.0	0.1	2.6
1.5	30.0	0.1	2.0
0.5	17.0	0.0	0.0
0.4	14.0	0.0	0.0
0.2	3.9	0.0	0.0
0.3	5.5	0.6	10.9
0.3	3.0	0.5	5.0
2.8	69.2	0.6	14.8
1.0	2.9	0.7	2.0
2.1	47.3	1.7	38.3
2.1	8.4	0.6	2.4
3.8	118.2	1.0	31.1
1.4	19.6	0.7	9.8
0.7	9.8	0.9	12.6
0.7	7.0	0.8	8.0
0.4	8.3	0.4	8.3
1.0	9.9	0.9	8.9
0.2	0.9	0.2	0.9
0.1	0.5	0.1	0.5
0.2	0.8	0.2	0.8
0.2	1.1	0.2	1.1
0.3	1.6	0.0	0.0
0.4	0.8	0.0	0.0
0.1	0.5	0.0	0.0
0.1	1.8	0.2	3.7
-0.4	-0.6	0.1	0.2
		. <u></u>	
0.85	Average	0.07	Average
Total P		Total P	
Reduction	1,034.2	Reduction	81.4

Key points in this data set include:

- ✓ The estimated annual phosphorus loss was reduced by (-1.0) to 4.8 lbs/acre through this manure application system, with the 2016 <u>average reduction of 0.88 lbs per acre</u>.
- ✓ Based on the 2016 data, the LDMI cost share program reduced phosphorus loss by 1,106 lbs.
- The cost of reducing the risk of phosphorus loss through LDMI was \$20 per acre divided by 0.88 pounds of P per acres = \$22.73 / pound.
- ✓ Total acres with manure applied with the LDMI system = 1,203 acres
- ✓ Total acres cost shared = 593 acres
- ✓ Acres planted without cost share in watershed = 610 acres

Looking at the data based on phosphorus reduction for each reach of stream is in table 9 (below).

Stream Reach	Acres	Percentage of Acres	Total Phosphorus Reduction
66	40.0	3.33%	29.0 pounds
64	1,163	96.67%	1,076.7 pounds

Table 9 Phosphorus reductions by stream reach

3. Low Disturbance Deep Tillage and Cover Crop:

The low disturbance deep tillage and cover crop program was offered in 2016 because of the wet fall and the very high potential for soil compaction done on fields harvested during high soil moisture conditions. The program offered cost share assistance to farmers willing to implement deep tillage practices that were also low disturbance. The goal was to reduce the potential for aggressive deep tillage conducted within the watershed, which would increase the potential for soil erosion. The cost share program offered a payment of \$55 per acre with a 50 acre maximum for a total possible payment of \$2,750 per operation.

Based on the information contained in the SNAP+ program it was impossible to determine the impact of low disturbance deep tillage verses other methods of deep tillage. This tillage system is not contained in the SNAP+ so farmers and crop consultants had to identify a tillage system that produces similar results. There are several ways of doing this so identification of the fields selected for this cost share practices was not possible. However, the 2016 YPF cost share dataset does contain a large number of fields where two practices were done on the same field (combined practices). The combined practices data set consists of fields that had cover crops as one practice, and then either strip tillage or LDMI as the second practice. Both strip tillage and LDMI are very similar to low disturbance deep tillage so the average reduction in phosphorus loss from the combined data set was used as basis for the low disturbance deep tillage and cover crop program.

The average reduction in predicted phosphorus loss from the implementation of two practices was 2.23 pounds/acre compared to the average reduction from cover crops of 1.48. Therefore, the impact of either low disturbance manure injection or strip tillage in combination with planting a cover <u>crop reduced phosphorus loss an additional 0.75 pounds per acre.</u>

The low disturbance deep tillage and cover crop cost share program had **<u>8 participants</u>** who implemented the practices on a total of **<u>730 acres within the watershed</u>**. The YPF cost share program paid on 378 of these acres with a total expenditure of \$ 20,790. The 730 acres with these practices implemented are included in the cover crop section of this report. Since evaluation of the low disturbance deep tillage verses conventional deep tillage is not possible within the current data set, we used the difference between the averages of combined practices and cover crops of develop a conservative estimate of phosphorus reduction.

Total acres planted with the LDDT plus cover crop system = 730 acres

Total acres cost shared = 378 acres

Acres planted without cost share in watershed = 392 acres

730 acres LDDT * 0.75 lbs. of phosphorus reduced over just cover crops = 547.5 pounds

A more accurate way to express the cost benefit of this program would be to take the total acres times the average of the combined practices and not include the acres in the cover crop portion of the report. This program resulted in 730 acres * 2.23 pounds/acre = 1,628 lbs of phosphorus. At \$55/acre divided by 2.23 pounds/acre the program resulted in a \$24.66 /pound of phosphorus reduced.

Of the eight farms participating in the LDDT + cover crop program seven were located in stream reach 64, while the other was in 63. The acres and phosphorus reductions are:

- ✓ Stream reach 64650 acres487.5 pounds of phosphorus
- ✓ Stream reach 63
 80 acres
 60 .0 pounds of phosphorus

Cover Crop Assistance Program:

Cover crops are grasses, legumes, small grains or other crops grown between regular grain crop production periods for the purpose of protecting and improving the soil. The most common cover crops are fall-seeded cereals, such as rye, barley or wheat, and fall-seeded annual ryegrass. Late summer-seeded spring oats or spring barley are sometimes used if winterkill is preferred to avoid spring termination by tillage or herbicide. One of the two major reasons for growing winter cover crops is to reduce soil erosion. In the Yahara Watershed a significant amount of the tillable acres has sufficient slope to be at risk for erosion if not adequately protected. Eroding soil particles not only fill in wetlands and streams, but they also carry particulate bound phosphorus to surface water.

Based on the data collected by the Yahara Pride Farms over the years of this cost share program, the use of cover crops is most effective when targeted to specific fields and farming systems. Cover crops have a high potential to reduce phosphorus loss on fields being harvested as corn silage with manure incorporated in the late summer or fall. Research has shown that fields with winter cover incorporated in the spring have 55 percent less water runoff and 50 percent less soil loss annually than do fields with no winter cover. More recent studies show soil losses from corn or soybeans no-tilled into a vigorous growth of rye or wheat to be 90-95 percent less than soil losses from corn and soybeans conventionally tilled.

Yahara Pride Farms began working with cover crops as a demonstration program in 2012. As the program gained publicity and recognition, farmers in the watershed became interested. Joining the program was also very easy, which was also very attractive to farmers. While not all the fields in the watershed planted into cover crops can be attributed to the Yahara Pride Farms program, it is clear that cover crops are becoming a recognized and accepted practice in the watershed. There are still a number of important considerations that need to be evaluated and addressed in regards to cover crops in this region of the state. Some of these include the cover crop species planted, the timing of planting, targeting fields that have the greatest potential for nutrient and sediment loss and targeting farming systems that have the greatest potential for nutrient and sediment loss.

In 2016 YPF worked with local crop consultants to get the information required to calculate the potential environmental benefits of all three cost shared practices. The information on the following pages for the cover crop program shows that in 2016 there were 290 fields with crop rotations and farming systems in the SNAP format. This represented 100% of the total acres planted with cover crops through the cost share program, though most of these acres were not cost shared. The wide range of farms and farming systems reflected in the data improves our understanding of the potential for cover crops to reduce phosphorus loss.

Based on the 290 fields, the estimated annual phosphorus loss was reduced in the range of (-1.9 lbs increased P loss) to 10.7 lbs/acre (decreased P loss) by the adoption of planting cover crops, with an average reduction of 1.48 lbs per acre.

Based on the field data collected during the 2016 seasons, the cover crop incentive demonstration program reduced phosphorus loss by 7,130 pounds (compared to 6,572 pounds in 2015). This reduction in the potential phosphorus delivery to surface water was an 8.5% increase over the 2015 cover crop program. The average reduction in phosphorus loss was almost 1.5 pounds per acre in 2016 compared to 1.8 lbs/acre in 2015. Care should be used when comparing year-to-year changes in the predictions of phosphorus loss because of changes to the SNAP+ program¹.

This year's phosphorus reduction = 7,130 lbs

Cost per pound of P reduced this year = \$40 / acre divided by 1.5 lbs / acre average phosphorus reduction = <u>\$26.67/lb.</u>

Cost share program sponsored at \$40 / acre for a maximum of 50 acres

Total acres planted using a cover crop system (includes both the cover crop program and the low

disturbance deep tillage with a cover crop) = 5,851 acres

Total estimated acres cost shared = 1,903 acres

Acres planted without cost share in watershed = <u>3,948 acres</u>

Year	2013	2014	2015	2016
Farms	20	37	35	37
Fields	80	53	160	290
Acres	2,382	4,732	4,908	5,851
Range in P reduction	-3.1 to 6.2	- <mark>0.6</mark> to 6.2	-1.0 to 13.4	- <mark>1.9</mark> to 10.7
Average	1.0 lbs / acre	0.8 lbs / acre	1.8 lbs / acre	1.5 lbs / acre
Total P reduction	1,957 lbs	3,786 lbs	6,572 lbs	7,130 lbs

32.5% of the acres planted to cover crops on YPF's land were cost shared

¹ The Natural Resources Conservation Service (NRCS) maintains the soil survey data used by the Revised Universal Soil Loss Equation 2 (RUSLE2) to estimate sheet and rill soil erosion. In 2014 NRCS began a national update of soil survey data including Tolerable (T) soil loss values and soil erodibility factors (K). The University of Wisconsin Soils Department annually updates the SNAP+ database to reflect the most current NRCS soil survey data. The edits to the SNAP+ soils database can cause changes to occur in the year-to-year predicted P loss values even when no other change to the farming system occurred. As a result, any comparison of year-to-year P loss values after 2014 must include an evaluation of SNAP+ soils data to determine if any edits occurred.

σ 4 v 110 9 8 76 2016 Phosphorus Report - Cover Crops 7.0 7.0 4.2 7.0 6.9 6.8 5.9 6.0 6.0 6.0 6.2 6.4 6.4 6.5 5.1 4.9 4.8 4.4 4.4 4.4 4.4 4.0 1.0 Acres 7.3 7.0 5 5 5.3 4.2 4.2 2.9 2.0 1.8 1.0 7.5 7.4 7.0 4.2 3.0 5.4 4.0 4.0 3 7.5 Whalan Wacousta St Charles Houghton St Charles St Charles Ringwood St Charles Griswold Ringwood Dresden Mchenry McHenry McHenry Griswold St Charles Dodge Edmund Plano St Charles McHenry St Charles Kegonsa Griswold Mchenry Ringwood Soil Type Mchenry Virgil Mchenry Mchenry Mchenry Batavia Batavia Troxel Plano Dodge Kidder Elburn Plano Dodge Kidder Kidder Plano Plano Boyer odman σ ScB MdC2 Soil Symbol MdD2 DnC2 RnC2 MdC2 MdC2 MdC2 MdC2 PnB DnB KdD2 MdC2 KdC2 KdC2 KdC2 KdC2 KdC2 RnB RnB MdD2 EfB MdC2 Но KdC2 SaA DsB DnC2 RnB BbB BbB ScB ScB GwC GwC GwC GwC ScB EdB2 PnB EdB2 PnB GwC MdD2 PnC2 KeB MdC2 PnC2 PnC2 DsB ScB ScC2 BbB ScB RnB РоВ RnB TrB റ KdD2 SO RpE Slope 2% 16% 16% 16% %6 2% 4% 9% 9% 9% 4% 28% 11%1%16% 16% %6 %6 4% 3% 16% 4% 10% 4% 4% 4% 8% %6 4% 16% 9% 9% 28% 10%15% 9% 9% σ %6 1% 9% 12% 4% 4% 16% 4% %6 4% 16% %6 9% 8% %6 Soil Test P PPM 106 153 61 96 11 ш З 67 51 67 23 15 90 1121 80 53 53 53 53 53 69 69 69 48 48 48 48 48 66 66 66 82 82 13 46 69 36 116 79 85 115 59 78 109 21 133 41 73 64 37 89 125 82 25 103 37 81 31 m 78 101 64 130 74 Rotat PI 0.0 ഹ 6 3.0 9.0 7.0 10 ω 4 4 0 σ Annua Pl Without Cover Crop т 0.0 14.0 0.0 15 6 10 0 6.0 11.0 9.0 0 Part. PI 0.3 14.0 5.6 5.1 2.6 4.8 9.3 4.8 4.5 3.1 2.4 7.4 4.5 0.9 0.6 10.0 6.7 6.7 2.0 1.2 2.6 2.6 2.6 2.4 4.4 4.4 6.7 0.4 4.6 0.2 5.4 5.9 4.2 0.2 8.9 4.3 2.4 8.5 0.6 4.1 4.1 3.2 6.0 6.2 4.3 5.9 3.7 2.3 13.10.1 0.5 7.9 6.0 3.1 7.8 2.2 Soluble PI 0.1 0.3 0.3 0.7 0.1 0.4 0.5 0.2 0.9 0.2 0.1 0.6 2.0 1.5 0.4 0.2 0.8 0.3 0.4 0.2 1.3 0.6 0.6 0.5 0.4 0.2 0.6 0.7 1.7 1.0 0.7 <u>_</u> 1.8 0.1 0.5 0.5 0.6 Rotat PI 5.0 0.0 8.0 5.0 3.0 8.0 Annual Pl With Cover Crop s z 5.0 10 б 3.0 0.0 ω 0 2.0 8.0 9.0 9.0 Part. PI 0.2 2.2 0.1 2.8 2.1 2.7 0.1 4.0 0.8 5.0 0.1 4.8 8.6 3.4 5.2 2.9 1.30.5 2.1 1.5 6.5 7.5 0.9 2.5 3.5 1.3 ω 4.3 1.9 7.6 3.7 8.4 0.6 . / ω 1.8 3.0 7.6 .0 Soluble PI 0.1 0.1 1.4 0.3 0.1 0.6 0.3 1.3 1.1 0.4 0.5 2.1 1.4 1.4 1.6 0.2 0.4 0.2 0.4 0.3 0.4 0.6 0.1 0.2 0.5 1.0 2.0 0.1 0.6 0.3 1.2 0.5 0.8 0.5 0.6 0.9 0.10.2 0.2 0.4 0.5 0.6 0.6 0.5 0 0.1 1.4 1.5 0.5 Annual P change per acre 0.4 5.4 3.4 6.6 0.5 -0.1 0.5 1.110.1 0.9 1.0 0.9 1.9 4.6 1.1 0.4 0.7 0.5 0.4 -0.3 1.0 2.4 0.0 0.7 0.1 0.3 0.3 0.0 1.9 0.5 0.0 0.2 0.2 0.5 2.0 0.6 0.1 0.2 00 5 0.0 1.4 1.86.9 2.9 1.7 -0.3 ρ Pounds Annual P change for field 64.6 46.2 40.0 24.8 -0.7 ω ΰ 14.2 11.5 0.0 0.0 3.0 ω 5 12.6 19.3 -1.6 5.1 0.0 0.7 0.4 8.5 5 9.8 7.5 6.6 3.9 -2.8 2.2 7.6 5.7 0.2 7.5 1.5 1.3 R 1.3 s Tolerable Soil Loss for the field tons/acre Calculated Soil loss for Cover Crops tons/acre the field Without 0.1 0.4 0.2 0.5 0.8 5 8 3.7 3.4 3.2 2.5 2.6 0.6 4.7 4.9 2.4 0.2 2.9 4.6 3.7 0.6 6.5 2.9 1.8 4.5 2.9 2.3 2.0 2.5 C Calculated Soil loss for the field tons/acre With Cover Crops 0.1 2.4 2.4 0.1 4.6 0.1 0.6 0.8 4.9 2.2 1.4 2.9 2.6 2.0 4.5 0.7 1.3 2.3 0.7 0.7 2.6 4.4 3.4 0.6 2.3 5.0 2.5 4.0 5.6 1.3 2.3 2.3 2.2 1.3 4.0 4.0 2 N.1 1.3 4.6 1.6 1.6 2 < Change in Soil Loss from Cover Crop tons/acre 0.1 0.2 0.0 0.0 -0.9 -1.3 -2.0 -0.3 -0.2 -0.2 -0.5 -0.1 0.9 0.5 -0.3 -0.6 -0.1 -0.2 0.0 0.1 -0.3 -0.4 ÷1.5 -0.7 6 5 -0.9 -0.3 -0.9 -0.8 -0.1 -0.2 0.0 0.0 -0.2 ≶ × Kidder Whalan Ringwood Griswold Griswold Mchenry Edmund Batavia St Charles Boyer Ringwood McHenry McHenry Kidder St Charles Mchenry St Charles Rockton Mchenry St Charles Ringwood Ringwood Kidder Ringwood Mchenry McHenry Critical Soil used Kegonsa Griswold Ringwood Orion Var Mchenry Houghton St Charles Griswold Mchenry Ringwood Kidder Mchenry Dresden Mchenry Virgil Dodge Dresden Kidder Kidder Batavia Kidder Kidder Mchenry Rodman Plano Mchenry Griswold Dodge Plano Kidder ~ Soil Symbol DrD2 MdD2 MdC2 DnC2 RnB BbB ScB GwC GwC GwC EdB2 MdD2 GwD2 RnB MdC2 GwD2 RnC2 MdC2 MdC2 KdC2 RnB WxD: KrE2 KeC2 DsB KdD2 ScC2 KeB ScB BbB GwC RnB RnB MdC2 RoD2 KdD2 KdD2 KdC2 KrE2 MdC MdC2 MdD2 MdC2 RnB DnC2 PnC2 ScB ٧rB ScB РоВ KdD2 GWC Но õ RpE Soil used MdC2 MdC2 MdC2 BoB GwC GwC MdC2 EdB2 KeC2 DsB DnC2 MdD2 MdC2 GwD2 MdC2 MdC2 MdD2 GwD2 KdC2 KdD2 MdD2 DrD2 WxD2 KdD2 KeB Gwc MdC2 MdD2 MdC2 PnC2 RnC2 ScC2 RnB RoD2 KdC2 KrE2 MdC: DnC2 ScB Yr₿ RnB KrE2 BbB ScB BbB ScB RnB ScB RnB GWC RpE РоВ RnB Ą Но RnB SO ⊳ Yahara Stream Reacl field is located 64 64 64 64 64 64 64 64 64 64 62 64 AC 64 64 64 64 64 64 64 64 63 64 64 64 64 64 64 69 64 64 64 64 64 64 64 63

Table 10 Changes in phosphorus loss from planting cover crops

11/ 118	116	115	114	113	112	111	110	109	108	107	90T			104	103	102	101	100	99	86	/6	ae		97	94	20	66	91	90	68	88	87	98	28	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63 i	62	61	2	1	
11.0	10.9	10.9	10.7	10.6	10.6	10.5	10.4	10.3	10.3	10.3	10.2	101	10 1	10.0	10.0	10.0	10.0	10.0	10.0	9.9	9.9	9.0		9 P	9.8	9.7	9.6	9.5	9.5	9.2	9.1	9.1	9.0	9.0	8.9	8.7	8.7	8.7	8.6	8.5	8.4	8.4	8.3	8.2	8.2	8.1	8.0	8.0	8.0	8.0	8.0	8.0	7.9	7.9	7.7	7.7	7.6	7.5	Acres	2016 PH	A B
Kingwood Kidder	Wacousta	Plano	Dresden	Mchenry	Dodge	Dodge	Plano	Plano	Dodge	Kidder	Batavia	NIISWOOD	Dipawood	Dodge	Whalan	Plano	Plano	Kidder	Dodge	Dodge	Plano	Plano		Troyel	Plano	Dodge	Whalan	Mchenry	Ringwood	Ringwood	Dresden	Griswold	Mchenry	St Charles	Kidder	Whalan	Ringwood	Plano	Dodge	Troxel	St Charles	Whalan	Dodge	Dodge	Dodge	Griswold	Ringwood	Plano	Kidder	Sable	Ringwood	Whalan	Kidder	Griswold	Dresden	Kidder	Kidder	Batavia	Soil Type	2016 Phosphorus Report -	
KdD2	Wa	PnB	DsC2	MdC2	DnC2	DnB	PoA	PnB	DnC2	KrD2	врв		0202	DnC	WxD2	PnB	PIA	KdC2	DnC2	Unв	Рпв	PhCz		TrR	PoB	DnB	WxD2	MdD2	RnB	RnC2	DsB	GWC	MdD2	ScB	KrD2	WхВ	RnC2	PnB	DnB	TrB	ScB	WxD2	DnB	DnB	DnC2	GwD2	RnB	PoA	KrE2	SaA	RnC2	WxC2	KdD2	GwD2	DsC2	KdC2	KdC2	BbB	Soil Symbol	s Repc	с
9% 16%	4%	8%	8%	%6	%6	4%	1%	16%	%6	15%	4%	70/ 0/ C	0%	8%	8%	2%	4%	9%	9%	%6	4%	0%7T	1001	ф.	4%	%6	16%	16%	4%	%6	2%	%6	16%	4%	15%	4%	%6	15%	4%	2%	4%	16%	%6	4%	8%	16%	4%	%6	16%	1%	%6	%6	16%	16%	%6	%6	%6	4%	Slope		D
96 52	255	52	46	12	78	33	133	106	20	58	/6	4	77	173	46	92	17	120	48	33	а Ч	5 08	CO TOO	108	170	21	25	36	104	61	83	67	48	128	66	33	19	59	21	06	13	06	25	40	136	21	107	63	51	197	75	41	60	27	81	47	39	105	Soil Test P PPM	Cover Crops	
4.0 3.0		2	4	-	3	6	4	3.0	3	10	σ		0	٩	ω	4	2	1	თ	4				40	7	ļ	2	ω	ω	4		5	4		12	1	2	4	0	4	ω	4	1	2	4		2	2	6	6	5	4	6		5.0	ц.	2	ω	Rotat. Pl		G
3.0	12	ζ ω	ω	1	5	7	6	6.0	2	9	υ	1 0	n [70	6	4	3	1	7	9	, u		, , ;	9 J	11		л	7	2	11	1	12	∞	1	9	2	2	4	1	ω	2	9	1	2	2	1	ω	л	л	7	13	4	∞		6.0	на 1	ω	л	Annual Pl	Withou	т
9.4 2.9	9.3	2.8	2.4	1	4.3	6.0	4.1	5.5	1.9	8.5	4.b	- u	n !:	177	5.6	ω .5	2.4	0.1	5.4	/.b	4./	. L.4	- - -	8 7	9.2	0.6	3.6	6.4	1.4	10.4	0.4	11.5	8.2	0.3	7.5	1.5	2.1	3.4	1.6	2.4	2.2	6.9	0.6	1.6	1.0	0.6	2.8	3.9	4.7	2.9	10.1	4.0	6.9	0.6	5.6	0.2	2.2	4.4	Part. Pl	Without Cover Crop	-
0.5	2.4	0.3	0.7	0.2	1.0	1.5	2.2	0.3	0.3	0.9	0./			1 q	0.3	0.9	0.2	0.4	1.4	1.0	0.5	0.4		0.3	1.6	0.1	1.0	0.3	0.7	0.4	1.0	0.4	0.3	0.6	1.2	0.3	0.1	0.3	0.1	0.6	0.1	1.6	0.1	0.2	0.8	0.0	0.5	1	0.2	3.9	2.5	0.5	1.4	0.0	0.7	0.3	0.7	0.6	Soluble PI	rop	_
3.0 3.0		2	4	- 1-	3	ы	4	3.0	3	∞	υ			7	2	4	2	1	თ	u	, u		J L	۰ ۵	7	_		2	ω	ω		ъ	ω	⊢1	∞	4	2	4	1	ω	ω	4	1	2	4		2	2	6	л	4	4	л		4.0		2	ω	Rotat. Pl		~
3.0	9	, ω	ω	1	4	4	ы	5.0	2	9	υ			٥	2	2	3	0	თ	υ	۲ L	~ ~	, i	۰ ۵	10			2	2	4	11	12	∞	1	6	2	2	4	1	2	1	б	1	1	2	1	ω	σ	л	4	7	4	6		4.0		ω.	4	Annual PI	With c	z
4.5 2.9	7.2	2.8	2.2	0.9	2.5	2.9	3.0	5.2	1.4	7.7	2.5			7 5	2.0	1.6	2.5	0.1	4.1	4.0	2.0	1.3	- r	2 Q	8.5	0.5	0.3	2.1	1.1	4.0	0.3	11.5	8.0	0.1	4.3	1.4	1.7	3.5	1.3	1.1	1.0	3.6	0.5	1.1	0.9	0.6	2.1	3.8	4.7	1.3	5.0	з.6	4.3	0.6	3.2	0.2	2.1	3.4	Part. Pl	With Cover Crop	z
0.5	2.2	0.3	0.7	0.2	1.2	1.3	2.2	0.3	0.3	0.9	0.4	0.2		7	0.2	0.7	0.2	0.4	0.4	1.0	0.3	0.3	0 0	0,2	1.8	0	0.7	0.3	0.7	0.3	0.8	0.4	0.3	0.5	1.3	0.2	0.2	0.3	0.1	0.4	0.1	1.4	0.1	0.2	1.0	0.0	0.8	0.8	0.2	3.0	2.2	0.5	1.2	0.0	0.5	0.3	0.7	0.8	Soluble PI		0
0.0	2.3	0.0	0.2	0.1	1.6	3.3	1.1	0.3	0.5	0.8	2.4		7 0	10.6	3.7	2.1	-0.1	0.0	2.3	3.6	2.9	0.2		5 0	0.5	0.1	3.6	4.3	0.3	6.5	0.3	0.0	0.2	0.3	3.1	0.2	0.3	-0.1	0.3	1.5	1.2	3.5	0.1	0.5	-0.1	0.0	0.4	0.3	0.0	2.5	5.4	0.4	2.8	0.0	2.6	0.0	0.1	0.8	Annual P change per acre	Poi	ρ
0.0	25.1	0.0	2.1	1.1	17.0	34.7	11.4	3.1	5.2	8.2	24.5		7.001	106.0	37.0	21.0	-1.0	0.0	23.0	35.6	28.7	20 7	, . , .	57.8	4.9	1.0	34.6	40.9	2.9	59.8	2.7	0.0	1.8	2.7	27.6	1.7	2.6	-0.9	2.6	12.8	10.1	29.4	0.8	4.1	-0.8	0.0	3.2	2.4	0.0	20.0	43.2	3.2	22.1	0.0	20.0	0.0	0.8	6.0	Annual P change for field	Pounds	R
2	- u	, , ,	ω	л	5	л	4	л	5	л	4		лц	л	2	л	5	ы	л	σ	, <i>u</i>	, U	- u	л.	4	υ	2	л	5	5	з	б	л	5	л	2	5	ъ	ъ	ъ	л	2	5	л	5	4	ъ	б	5	5	ы	2	5	4	ω	<i>о</i>	σ.	4	Tolerable Soi Loss for the field tons/acre		T S
3.9 2.5	3.4	2.2	3.0	0.9	2.0	5.9	1.6	3.0	1.8	6.3	5.4	2.0		4 A	2.0	2.1	1.9	0.1	1.8	3.3	4.3	2.1	- C	2.2	ω	1.0	1.6	2.1	6.0	3.0	2.0	5.1	3.0	0.4	7.0	2.0	1.2	3.9	0.6	2.6	2.7	2.1	0.6	1.7	2.3	0.6	0.8	2.7	6.0	1.0	2.4	3.5	3.8	0.9	4.0	0.4	1.1	2.6	ioil Calculated ne Soil loss for the field tons/acre	Without Cover Crops	_ _
2.5	4.2	2.2	2.9	0.8	1.7	5.3	1.5	2.8	1.6	5.1	4.5	. I. I	1 4	л	1.5	1.8	1.9	0.1	2.3	2./	3.8	2.1	- C	2.5	3.0	0.9	0.7	1.5	5.8	2.1	1.9	5.1	2.8	0.3	5.0	2.0	1.1	3.9	0.3	2.2	2.3	2.0	0.6	1.6	2.3	0.6	0.7	2.6	6.0	0.9	2.0	3.3	3.5	0.9	3.2	0.4	0.9	2.4	ed Calculated Soil for loss for the d field tons/acre	nt With Cover	
				_								-	-	+								-	╞	+		-	+																									_		_	_	-	_			s ver	
0.0	0.8	0.0	-0.1	-0.1	-0.3	-0.6	-0.1	-0.2	-0.2	-1.2	-0.9	0		-	-0.5	-0.3	0.0	0.0	0.5	-0.6	-0.5	0.0	5:		-0.3	-0.1	-0.9	-0.6	-0.2	-0.9	-0.1	0.0	-0.2	-0.1	-2.0	0.0	-0.1	0.0	-0.3	-0.4	-0.4	-0.1	0.0	-0.1	0.0	0.0	-0.1	-0.1	0.0	-0.1	-0.4	-0.2	-0.3	0.0	-0.8	0.0	-0.2	-0.2	Change in Soil Loss from Cover Crop tons/acre		×
Kingwood Whalan	Dresden	Griswold	Dresden	Mchenry	Dodge	Dodge	Plano	St Charles	Dodge	Kidder	Batavia	MINISWOOD	Dipawood	Dodge	Whalan	Plano	Kidder	Kidder	Dodge	Michenry	Plano	Klader	Kieldor	Ringwood	Plano	Kidder	Whalan	Mchenry	Plano	Ringwood	Dresden	Plano	Mchenry	St Charles	Kidder	Whalan	Ringwood	Kidder	Dodge	Troxel	St Charles	Whalan	Dodge	Dodge	Dodge	Griswold	Ringwood	Dodge	Kidder	Sable	Ringwood	Whalan	Kidder	Griswold	Dresden	Kidder	Kidder	Batavia	Critical Soil used		~
KnC2 WxD2	DsB	GWC	DsC2	MdC2	DnC2	DnB	PoA	ScD2	DnC2	KrD2	вая	DLD	0,00	DnC2	WxD2	PnB	KdB	KdC2	DnC2	MdC2	PnB	NIU2		- 00 Rn(7	PoB	KdD2	WxD2	MdD2	PnB	RnC2	DsB	PnC2	MdD2	ScB	KrD2	WxB	RnC2	KrD2	DnB	TrB	ScB	WxD2	DnC2	DnB	DnC2	GwD2	RnB	DnC2	KrE2	SaA	RnC2	WxC2	KdD2	GwD2	DsC2	KdC2	KdC2	BbB	Soil Symbol		Z
WxD2	DsB	GWC	DsC2	MdC2	DnC2	DnB	PoA	ScD2	DnC2	KrD2	врв	3/0	00/	DnC	WxD2	PnB	KdB	KdC2	DnC2	MdC2	PnB	NTU2		. 55	PoB	KdD2	WxD2	MdD2	PnB	%6	DsB	PnC2	MdD2	ScB	KrD2	WxB	RnC2	KrD2	DnB	TrB	ScB	WxD2	DnC2	DnB	DnC2	GwD2	RnB	DnC2	KrE2	SaA	RnC2	WxC2	KdD2	GwD2	DsC2	KdC2	KdC2	BbB	Soil used		AA
64	62	64	64	64	64	64	63	64	64	62	62	6 f	£ 4	64	64	64	69	66	62	64	64	04	6	64	64	64	64	62	64	64	64	64	62	66	62	64	64	64	64	62	64	64	64	64	64	64	64	63	62	63	64	64	64	64	64	64	64	63	Yahara Stream Reach field is located		A AC

Table 10 cont. Changes in phosphorus loss from planting cover crops

175	174	1/3	172	172	171	170	169	168	167	166	100	165	164	163	162	161	160	159	100	100/	157			151	102	TOT		149	148	147	146	145	144	143	142	141	110	138	137	136	135	134	133	132	130	129	128	127	126	124	123	122	121	120	119	N	ц	
16.7	Ĺ	10.4	Ť	Ť	T	Ī					T	Ť		15.8	15.5		Ĺ	Ī	15.0	Ť	Ť	Ť	Ť	1/1 5	Í	Ť	Ì	Ì	Ť	Ĺ	Ĺ		13.8			Ì	12 5	Ť	Í				Ť	12.7			12.1		T	11.0	Ť	11.5	Π	11.0	Ì	Acres	4 0T07	1010
Whalan	Plano	Dodge	Dodao	Troxel	Ringwood	Kidder	Wacousta	Radford	Dresden	Elburn		Griswol	McHenry	Ringwood	Kidder	Kidder	Mchenry	Sebewa	PIdIO	DISMOOD	St Unaries		Dresden	Ringwood	Grays	PIdIO	Griswold	Elburn	Plano	Kidder	Virgil	Kidder	Mchenry	Griswold	Mchenry	Dodge	Pingwood	Kidder	Dodge	Dresder	Ringwood	Dodge	Kidder	Mchenry	Plano	Dodge	Plano	Griswold	Plano	St Charles	Mchenry	Griswold	Plano	Mchenry	Mchenr	Soil Type	2016 Phosphorus Report -	
WxC2	PnB	DUB		+	+	_		RaA			╋	+	-	d RnC2	KdC2		-	+	PIIC2	+-	╈	Ť.	+		┢	PIID		┢		┢		KdC2	/ MdC2	-	-	+	A BPCS	┢	\vdash	1	d RnB	_	_	MdD2	PnB		PnB	+	+		+-		Н	-	/ MdD2	Soil	us kep	
%6	%6	%e	700	16%	+	16%	4%	2%	9%	2%	20/0	+		%6	8%	9%			10/ 10/	$^{+}$	4%	/0 <i>V</i>	2%0	9% Ε	t	40V	%cT	3%	%6	%6	4%	%6			+	+	9%	t		%6	4%		16%	16%	15%		4%	16%	25%	4%	T	t			%6	Slope	ort - Cov	
40	165	1C-	17	151	142	133	148	69	70	64	c.	58	20	116	109	52	50	4/	2C	r Jo	11	4 / 1	767	12)	24 CP	20	54	69	82	91	30	25	36	41	59	47	17	41	27	82	76	71	76	87	2 39	47	77	26	79	8L TC	113	53	37	35	32	Soil Test P PPM	Cover Crops	····
1	ω	, -	4 1.0	11.0	9	2	6.0	ω	4	1	· ·		2	5	ъ	1	2	, u			A ~	1 L	≤ c	4 00	•	, -	4	σ	, u	, 	2	4	4	11	ω	∞	A ~	یا د	9	ъ	2	4	5	л L	- ω	ω	2	ω	2		2 2	2.0	1.0	л	2	PI PI	T	 G
170	4		10.0	16.0	18	2	7.0	4	7	1		υ	ω	л	6	1	2	~ ~	~ ~	J.0.0	10 U	J (۵ t	<u>,</u> 4	, ,	J N	υ u	4	• ~	1	2	з	ω	2	ω	13	7 N	ы ц	24	11	1	12	10	10	4 L	4	з	6	2		- o	3.0	3.0	10	2	Annual Pl	WITHOU	Without
2.2	2	, U.O	D C	14.7	16.5	1.0	3.9	2.4	6.4	0.5	2	27	3.2	4.5	5.0	0.4	2.0	0.9	×.1	۰.0T	10.0		χ 1 1.4.4	3.0	, .	. I.J	4.7	3.6	7.6	0.3	1.2	1.8	3.1	1.7	3.2	12.5	1 1.0	1.6	23.3	10.8	0.8	11.4	9.1	9 A	2.6	3.5	2.4	5.9	1.2	υ.ο 0.0	۰.9	2.2	2.1	9.1	1.8	Part. Pl	Without Cover Crop	
0.4	1.9	0.I	0 1	1.2	1.4	1.4	2.7	1.7	0.6	0.8	0 4	04	0.1	0.9	0.8	0.2	0.4	0.8	0.4	0.2	0.1	0.0	۰ ۵	0.1	0.0	0.0	0.0 0.0	0.7	0.9	0.3	0.3	0.8	0.3	0.2	0.2	0.5	о . л 4	0.1	0.8	0.5	0.4	1	0.6	0.4	1.3	0.2	0.3	0.2	0.9	0.4	0.5	0.5	0.4	0.6	0.1	Soluble Pl	dp	
	ω	, -		7.0	∞	2	6.0	ω	4	2	,		2	4	ω	1	2	ο u		J	A ~	م د	J 0	4 0X	•	ŀ	- ×	σ	4	0		4	4	11	ω	6		J L	6	ω	2	4	σ	л I.	- ω	2	ω	ω	2	- 	2 2	3.0	1.0	ω	2	Rotat. Pl		- 7
2	4			8.0	12	2	6.0	ω	ω	1		س	ω	4	ω	1	2	, r	~ ~	ر ۲0.0	10 0	م د	5 ¹	1/		~ ~	υ u	~ ~	ω	0		2	ω	1	ω	ы	л Э	ь н	. 13	ы	1	12	10	7 0	2	1	з	6	ω	2 1	<u>،</u> س	3.0	3.0	2	ω	Annual Pl	WITH C	
1.3	1.6	0.0		6.9	10.2	0.8	3.6	1.3	2.8	0.5	2 1	2 2	2.7	ω .3	2.4	0.3	1.9	0.8	1.0	1 U.U	٥.٥	, L	1 7	13.0	4.2	7.7	2./	1.6	2.6	0.1	0.3	1.6	3.0	1.3	3.2	4.5	A 0.1	0.6	12.8	4.0	0.4	11.1	9.1	ъ. С. С	1.8	1.2	2.9	5.8	1.8	17	2.9	2.3	2.2	1.2	2.8	Part. PI	with Cover Crop	
0.4	2	, U.I	0.1	1.0	1.4	1.1	2.7	1.3	0.4	0.8		0 5	0	0.9	0.5	0.2	0.4	0./	0.4	0.2	0.1	0.1	0.7	0.1	0./	0.0	0.0 0.0	0.6	0.b	0.3	0.3	0.8	0.3	0.2	0.2	0.6	ол л	0.1	0.6	0.9	0.6	1	0.6	7.7 T.7	0.6	0.3	0.5	0.1	1.1	0.4	0.5	0.4	0.4	0.6	0.2	Soluble Pl		c
0.9	0.3	0.1	0.1	8.0	6.3	0.5	0.3	1.5	3.8	0.0		0.4	0.6	1.2	2.9	0.1	0.1	0.2	0.0		0.4	, c	1.1	11	4.0	20.1	0.0	2.1	5.3	0.2	0.9	0.2	0.1	0.4	0.0	7.9	2.0	0.0	10.7	6.4	0.2	0.3	0.0	28	1.5	2.2	-0.7	0.2	-0.8	2 2	3.0	0.0	-0.1	7.9	-1.1	Annual P change per acre	2	
15.0	5.0	1.0	7.101	131.2	102.7	8.2	4.9	24.2	60.8	0.0		6.4	9.5	19.0	45.0	1.5	1.5	3.0	4 L	, ∖ ⊓i	9 F	- 0 	V 20	16 N	10.0	-1.4	1.0	29.4	/4.2	2.8	12.6	2.8	1.4	5.5	0.0	107.4	0.0	٦ <i>С</i> /	139.1 2	82.6	2.6	3.8	0.0	32.6	18.8	27.1	-8.5	2.4	-9.6	26 D	35.1	0.0	-1.1	86.9	-12.1	Annual P change for field	Pounds	-
r 2	ы	n u	n u	ω	ъ	5	ω	б	ω	υ	, ,	л,	5	5	5	5		, u	J U		n u	- L	(л и	, u	, 0	4	. <i>u</i>	, <i>u</i>	, <u>"</u>	ъ	5	S	5	5	5	лк	J U		ω	ъ	5	σ,	л с	4	5	5	л	2	ли	- u	4	4	л	м	Tolerable t Loss for t field tons/acr		-
1.9	1.1	. U. Y	0 0	2.9	5.3	2.6	2.8	1.8	3.6	0.6		2.2	1.2	3.0	5.6	1.2	1.8	6.L	1.0		4.T	4 C 4	37.0	4.0	4.4	J 0.0	1.4	3.2	3.4	0.5	1.6	3.3	8.0	1.5	4.7	4.3	2.2	د د 9.0	7.6	4.4	0.8	2.2	5.0	5.9	1.7	2.2	1.2	2.5	2.6	19	1.9	1.9	1.0	3.3	3.2	Soil Calculated he Soil loss for the field e tons/acre	Cover Crops	Without
1.3	1.0	4.U.9	0.0	2.0	4.5	2.7	2.4	1.6	3.1	0.6	0.0	2 0	1.4	2.8	4.7	1.2	1.8	1.9	1.0	. U.U	0 C	1 0	1 7	5.7	7.7	4.0 V.0	0.4	2.9	2.8	0.2	1.2	3.3	8.0	1.3	4.7	3.2	о Г.	4 7	5.7	2.5	0.9	2.1	5.0	5.3	1.7	1.8	1.4	2.4	2.7	1.2	1.3	0.9	1.0	2.3	3.2	Calculated Soil loss for the field tons/acre	+	with Cover
-0.6	-0.1	0.0		6.0-	-0.8	0.1	-0.4	-0.2	-0.5	0.0	0.1	-0.2	0.2	-0.2	-0.9	0.0	0.0	0.0	o	0.1	0 -0, 1	0.1	-0.7	-0.3	-0.2	0.1	0.0	-0.3	-0.6	-0.3	-0.4	0.0	0.0	-0.2	0.0	-1.1	0 - 0 - 0	0.0	-1.9	-1.9	0.1	-0.1	0.0	-0.2	0.0	-0.4	0.2	-0.1	0.1	-0.7	-0.6	-1.0	0.0	-1.0	0.0	Change in Soi Loss from Cover Crop tons/acre		V
Whalan	Griswold	wichenry	Mehoppy	Dresden	Ringwood	Kidder	Dresden	Radford	Dresden	Elburn		Griswold	McHenry	Ringwood	Kidder	Kidder	Mchenry	Sebewa	Millinety	Military	St Charles		Dreeden	Ivicitenty	Grays	Kingwood	Griswold	Elburn	Plano	Kidder	Virgil	Kidder	Mchenry	Plano	Mchenry	Dodge	Pingwood	Kidder	Mchenry	Dresden	Ringwood	Dodge	Kidder	Mchenry	Griswold	Dodge	Ringwood	Mchenry	Whalan	St Charles	Mchenry	Griswold	Griswold	Mchenry	Mchenry	il Critical Soil used		_ ≥
WxC2	┢	┢	MACO	t	1				DrD2			GWC			KdC2	KdC2	\mathbf{f}			╈	SCB	t	t	PhC2	t	t	t	┢	┢	KdC2	VrB	KdC2	MdC2		MdD2		╈	KdD2	t			DnB	+	╈	GwD2	┢	Н	MdD2	╈	SCB	+	GwD2	Η	╉	MdD2	Soil Symbol		- -
WXC2	GWC	IVIGLZ		DrD7	RnC2	KdD2	DsB	RaA	DrD2	EoA		GWC	MdC2	RnC2	KdC2	KdC2	MdD2	Se	NIINI ZUIINI		SCB	Con Dore			aso	RIIC2	GWD2	ETB	PnC2	KdC2	VrB	KdC2	MdC2	PnB	MdD2	DnC2	PpC2	KdD2	MdD2	DsC2	RnB	DnB	KrE2	MdD2	GwD2	DnC2	RnC2	MdD2	WxE2	SUB	MdD2	GwD2	GwD2	MdD2	MdD2	Soil used		AA
64	63	6	101	64	64	64	62	64	62	69	6 4	64	64	64	62	62	64	69	60	Ŋ	64	C ² of	64	64	64	64	64	64	64	66	66	64	62	64	62	64	64	62	62	64	64	63	62	63	64	64	64	64	63	64	64	64	64	64	62	Yahara Stream Reach field is located		M AC

Table 10 cont. Changes in phosphorus loss from planting cover crops

234	233	232	231	230	677	077	220	227	226	225	224	C77	222	222	221	220	219	218	217	216	215	214	CT7	212	212	211	210	209	208	207	206	205	204	203	202	201	200	199	198	197	196	195	194	193	192	191	190	189	188	187	186	185	101	107	T8T	180	179	8/T	177	2			-	Τ	7
Π	27.3	27.2	27.2	27.0	27.0	27.0	0 26	5 96	26.0	24.9	24.5	24.4	24.4	7 A A	24.0	24.0				23.0	22.6	22.2	1.77	22.0	77 N	0 22	21.4	21.3	21.3	21.2	21.1	21.0	21.0	20.9	20.6	20.3	20.0	20.0	20.0	20.0	Ĺ	Ĺ	20.0	20.0	20.0	20.0	19.9	19.6	19.5	Ť	Ť	19.2	10.4	18.4	10.3	18.0	18.0	10.0	17.3	2	Acres		2016 PI	,	Δ
Roc	Plano	Troxel	Mchenry	Griswold	Elburn	Donge	Dodao	Plano	Plano	Whalan	Virgil	IVICIEIIIY	Mohonny	Plano	Ringwood	Ringwood	Griswold	Plano	Kegonsa	Rockton	Elburn	Plano	DOD MBIIN	Dingwood	St Charles	Plano	Rockton	Dresden	Griswold	St Charles	Dresden	Plano	St Charles	Warsaw	Wacousta	Plano	Mchenry	Mchenry	St Charles	Mchenry	Batavia	Elburn	Ringwood	Plano	Plano	Plano	Batavia	Kegonsa	Ringwood	Plano	St Charles	Batavia	Discoursed	Kegonsa	Dodge	Dodge	Ringwood	Griswoid	Griswold)	Soil Type		2016 Phosphorus Report -	c	π
RoC2	PoA	ΤrΒ	MdD2	GwD2	ьgА			PoR	PnB	WхВ	VrB	IVIUCZ		+	+	-	_	PnB	KeB	RoC2	EfB	PnC2	╈	+	ScB .	+	+	DsC2	1		DsC2	PnB	SPC5	WrC2	Wa		_	┢	┢		Врв	+	┢	┢	PnA	PnB	BbB			+	+	BbB	+	KeB	Ung	DnB	1	GWB	-))	Soil Symbol		us Repo	~	– ר
9%	%6	2%	16%		t	t	160/	4%	4%	%6	4%	270	200	Q0%	4%	1		%6	2%	%6	3%	%6	4/0	701	16%	4%	21%	%6	%6	%6	8%	8%	%6	4%	1%	4%		┢	3%		┢	%6	4%	4%	%6	4%	2%	%6	15%	4%	4%	%6	77 V	70%	4%	۰۰× %6	4%	%αT	16%	20	Slope		ort - Cov		- -
37	61	120	29	62	18	00	200	129	77	23	163	50	2 0	20	74	42	33	45	167	37	83	22	101	ب ۲	47	76	51	20	48	39	106	85	14	45	94	60	20	27	49	91	130	85	50	57	46	96	173	86	50	54	15 5	89 ‡	47	2 6	6 4	71	33	51 FT	10	3	Soil Test P PPM		Cover Crops	-	 n
2	л ,	ω	5	2	u	, ,		80		4	4.0	U		'n	2	л	4	5	2		2	~	, +.0	3		J	ω	4	7	2	ω	2	4	1.0	з	ъ	4	ω	ω	-	σ	_	4	4		2	7	5	7	2	ω.	4	- u		٦ 4	9 9	5 5	, U	, 		Rotat. Pl	_		-	ت ۳
2		2	10	4	4		D 1010	10.0	1	5	5.0	+	 	'n	ω	7	7	4	2	2	ы	, ₁	,	л О	χ.	Δ	2	∞	7	4	80	3	8	2.0	3	5	ы	4	2	0	9	9	σ	4	2	1	6	6	7	2	2 0	ωr	J U	- 11	11	, 7	- 15	÷ +	<u>ہ</u>		Annual Pl		Withou	-	I
2.1	4.5	1.1	9.8	3.8	ι. 	0.2) 1	8	0.3	4.9	4.7	J.4	и г. 1	7 A	ω	6.3	6.8	4.3	0.8	1.3	4.1	1.0	, t.	A i	7 2	47	1.8	7.4	6.2	4	7.3	2.3	7.6	1.3	0.9	4.0	4.4	3.9	1.3	0.1	7.8	6.2	5.0	3.2	1.5	1.0	4.3	6.1	6.9	1.5	1.4	9.9 0.1	4.4	10.2	10.7	4.5	14.2	4.1	0.5	2	Part. Pl		Without Cover Crop	-	-
0.3	0.2	1.2	0.4	0.4	0.5	0.1	0 1	8 0	0.5	0.2	0.7	0.±	0 4	ΠA	0.4	0.4	0.5	0.2	1.4	0.2	0.9	0.2		о л с	0,50	۳ ۵	0.4	0.5	0.4	0.2	1.1	0.6	0.1	0.3	2.2	0.5	0.2	0.4	0.2	0.3	0.8	2.8	0.5	0.5	0.2	0.4	1.3	0.4	0.4	0.2	0.1	0.4	0.4	0.5	0.7	2.7	0.6	0.1	0.7	1	Soluble PI		op		-
2	4	ω	4	2	~			60		3	4.0	U	u r	5	2	4	ω	5	2		2			3	r	2	ω	4	თ	2	2	2	2	1.0	2	ъ	ω	ω	ω			σ	ω	4		2	6	4	4	<u>н</u>	ω,	, ⊦	- -	J ₽	۰ ۱	9	4		, ⊢		Rotat. Pl				-
2	ω	2	∞	ω	u	, ,		9 0		4	5.0	7	م د	J	ω	ω	ω	4	2	2	ω	, н	, ;	3,	7 4	л		7	б	4	6	2	1	1.0	2	4	4	4	2	0	U.	σ	. <i>u</i>	4	. 2	1	σ	6	2	н	⊢ ,		- u	n u	٦ L	, 7	۰ ۱ տ	+ r	<u>م</u>		Annual PI		With Co	IVI	s
2.0	4.4	1.0	7.2	2.4	2.5	0.2	0.0	86	0.3	3.9	4.0	2.2	2.0	0 0	2.5	2.7	2.8	4.1	0.5	1.3	1.8	0.6	0.2	υ υ υ	л: л.	44	0.9	6.1	6.0	4.1	5.4	1.6	1.0	1.8	0.4	3.2	3.7	3.6	1.3	0.1	3.9	3.6	4.8	3.2	1.3	0.9	3.0	5.8	1.9	1.1	1.3	0.6	4.0	4.5	1./	4.1	4.4	3.0	0.5	2	Part. PI		With Cover Crop	14	z
0.3	0.2	1.1	0.6	0.4	0.4	0.1	0.1	80	0.5	0.2	1.1	0.2	0 C	ΠA	0.6	0.3	0.3	0.2	1.1	0.2	0.7	0.2	0.4		9.0	0.2	0.5	0.7	0.4	0.2	1.0	0.8	0.1	0.3	1.8	0.5	0.2	0.5	0.2	0.3	0.6	2./	0.5	0.5	0.2	0.4	1.6	0.4	0.4	0.3	0.1	0.2	0.4	0.3	0.6	2.6	0.3	0.1	0.7	2	Soluble Pl			c	D
0.1	0.1	0.2	2.4	1.4	9.0	0.0		c 0	0.0	1.0	0.3	1.1	1 0	ΠA	0.3	3.7	4.2	0.2	0.6	0.0	2.5	0.4	0.9	0.0	0.2	-0 2	0.8	1.1	0.2	-0.1	2.0	0.5	6.6	-0.5	0.9	0.8	0.7	0.2	0.0	0.0	4.1	2./	0.2	0.0	0.2	0.1	1.0	0.3	5.0	0.3	0.1	2.0	4 O.L	o.9	0.2	0.5	10.1	10.0	0.0		change per acre	Annual P	Po	ړ	S
2.7	2.7	5,4	65.3	37.8	24.3	0.0		л и	0.0	24.9	7.4	20.0	0 JC	8 0	7.2	88.8	100.8	4.8	14.1	0.0	56.5	8.9	0.0 7.57	10 0	15.4	-4.4	17.1	23.4	4.3	-2.1	42.2	10.5	138.6	-10.5	18.5	16.2	14.0	4.0	0.0	0.0	82.0	54.0	4.0	0.0	4.0	2.0	19.9	5.9	97.5	5.8	1.9	38.4	10.0	1 0°.	100 C	9.0	181.8	101 D	0.0		change for field	_	Pounds	-	Ð
1	5	5	5	4	. <i>u</i>	1 0	л	u	л	5	4	u	лц	л	υ	5	4	5	з	2	5	, ,	, .	лц	л.	4	2	ω	ω	2	ω	5	4	1	5	4	5	5	5	5			, с	4	. 5	5	4	з	5	σ.	4	ω ι		- u			, , ,	,	ں م	tons/acre		Tolerable Soil	╞	- -	т Ы
	+	+			╞	+	╞						╀			+				┝		┝	╀		╀		+		-		_					_	┝			┝				$\left \right $			\vdash	_	_	+	+	╀		╞	┝	╞				-			Cov	5	-
2.6	3.7	1.5	3.8	1.0	2.3	0.F		48	0.3	4.9	1.7	0.0	0 L C	1 8	0.8	4.4	2.7	4.1	1.6	1.5	1.3	1.2	4 U.F	N 1	29	1	2.7	2.6	7.1	2.8	1.3	0.8	3.8	1.1	1.0	5.2	4.8	3.0	3.1	0.1	3.2	3./	3.3	υ υ υ υ	1.3	0.7	2.5	2.8	5.5	1.4	3.2	2.4	2.0	5.4 0	1.6	5.7	5.2	4.0	0.6	ore	Soil loss for the field	_	Cover Crops	/i+5 c	=
2.6	3.5	1.5	3.0	0.9	1.6	4.0	0	4 1	0.3	4.5	1.6	2.0	0 C	٦ h	0.7	3.5	2.3	4.0	1.2	1.6	1.0	1.1	4.0	20	2 8 5	14	2.3	2.4	5.9	2.9	1.1	0.7	2.5	1.3	0.9	4.8	4.5	2.5	3.1	0.1	2.6	3.4	2.6	ω 	1.2	0.6	2.2	2.1	3.1	1.2	2.9	1.3	2.0	4.L	1.b	5.5	5.0	4./	0.7	, 1	loss for the field tons/acre	Calculated Soil	Crops	With Cover	<
0.0	-0.2	0.0	-0.8	-0.1	-0./	, r	0 1	- n -	0.0	-0.4	-0.1	-0.2	-0-2	- n-,	-0.1	-0.9	-0.4	-0.1	-0.4	0.1	-0.3	-0.1	-0.1	-0 -	-0 -1	0 1	-0.4	-0.2	-1.2	0.1	-0.2	-0.1	-1.3	0.2	-0.1	-0.4	-0.3	-0.5	0.0	0.0	-0.6	-0.3	-0./	-0.2	-0.1	-0.1	-0.3	-0.7	-2.4	-0.2	-0.3	-1_1	0.0	-1.3	4.0	-0.2	-0.2	0.1	0.1	tor	Loss from Cover Crop	Change in Soil		~	×
Dunbarton	Mchenry	Troxel	Mchenry	Griswold	Plano	NIQUEI	Viddor	Dresden	Plano	Mchenry	Batavia	INICIEIIIÀ	Mohoppy	Plano	Ringwood	Ringwood	Griswold	Ringwood	Kegonsa	Rockton	Elburn	Plano	FIGILO	Plano	Kidder	Ratavia	Rockton	Dresden	Dresden	Whalan	Dresden	Griswold	St Charles	Edmund	Wacousta	Plano	Mchenry	Mchenry	St Charles	Mchenry	Dresden	Warsaw	Plano	Plano	Ringwood	Plano	Batavia	Dresden	Kidder	Dodge	Plano	Dresden	Nidder	Uresden	Dodge	Mchenry	Ringwood	Eamuna	Griswold		Critical Soil used		F		×
	2	╈	MdD2	GwD2	PnB	NUDZ	╉	+			BbB		I IICZ	┥		1		_		RoC2		PnC2	P ID	DDB	KdD2	╉	┥	DsC2	+	WxC2	DsC2					РоВ	-	MdC2	┢	-	┢	WrC2		T	d RnC2		BbB		KrD2	DnB	+	Ds(2)	╈	UrU2	DDD	┢			┢	┢	il Soil Symbol				7
$\left \right $	MdC2	TrB	MdD2	GwD2	РПВ	NUDZ	KHD3	D <r< td=""><td>PnB</td><td>MdC2</td><td>BbB</td><td>IVIUCZ</td><td>I IICZ</td><td>PnC3</td><td>RnB</td><td>RnC2</td><td>GwD2</td><td>RnC2</td><td>KeB</td><td>RoC2</td><td>EfB</td><td>PnC2</td><td>r ID</td><td>DDD</td><td>KdD2</td><td>RhR</td><td>RoD2</td><td>DsC2</td><td>DsC2</td><td>WxC2</td><td>DsC2</td><td>GWC</td><td>SpB</td><td>EdB2</td><td>Wa</td><td>PoB</td><td>MdC2</td><td>MdC2</td><td>ScB</td><td>MdC2</td><td>DsC2</td><td>WrC2</td><td>PnB</td><td>Ров</td><td>RnC2</td><td>PnB</td><td>BbB</td><td>DsC2</td><td>KrD2</td><td>DnB</td><td>PoB</td><td>DsC2</td><td>Ppp P</td><td></td><td>DDD</td><td>MdC2</td><td>RnB2</td><td>Edh7</td><td>GWC</td><td>0</td><td>ol Soil used</td><td></td><td></td><td>3</td><td></td></r<>	PnB	MdC2	BbB	IVIUCZ	I IICZ	PnC3	RnB	RnC2	GwD2	RnC2	KeB	RoC2	EfB	PnC2	r ID	DDD	KdD2	RhR	RoD2	DsC2	DsC2	WxC2	DsC2	GWC	SpB	EdB2	Wa	PoB	MdC2	MdC2	ScB	MdC2	DsC2	WrC2	PnB	Ров	RnC2	PnB	BbB	DsC2	KrD2	DnB	PoB	DsC2	Ppp P		DDD	MdC2	RnB2	Edh7	GWC	0	ol Soil used			3	
64	63	64	62	64	64	Q.	64	64	64	64	62	04	64	64	64	64	62	63	64	64	64	64	C q	64	67	64	64	62	64	64	64	64	69	64	64	64	64	62	62	65	64	64	64	64	64	64	63	63	63	64	64	63	64	64	64	62	69	64	64	located	Str	Yahara		7	

292	291	290	289	288	287	286	285	284	283	282	T07	102	100	279	278	277	276	275	274	273	272	2/1	0/7	697	202	107	727	202	201	707	202	1 2 2 2 2 2	261	260	259	258	257	256	255	254	253	252	251	250	248	742	246	245	244	243	242	241	240	239	727 / C7	727	235	2	,	1		
153.0	121.0	117.0	114.0	110.0	109.1	0.66	90.0	75.0	72.0	68.2	07.0	0.00	62.0	63.0	60.0	57.0	55.1	55.0	49.0	46.1	46.0	46.0	45.5	44.I	41.8	41.0	40.0	1.CC	1 00	39.0	28 G	782	0.50	37.0	36.9	35.6	35.1	34.0	33.8	32.1	31.8	31.1	21 1	30.0	30.0	0.00	30.0	29.9	29.6	29.3	28.8	28.1	28.1	28.0	28.0	28.U	27.5		Acres	2016 M	יייייייייייייייייייייייייייייייייייייי	۵
Dresden	Plano	Plano	St Charles	Batavia	Griswold	Dresden	Plano	St Charles	Ringwood	Kidder	FIGIO	Plano	Dingwood	Plano	Rockton	Kidder	Kidder	Plano	Plano	Plano	St Charles	Ringwood	Dresden	st charles	Plano	FIGIO	Plano		Discologi	Ringwood	St Charles	Warniista	Plano	Plano	Dresden	Plano	Griswold	St Charles	Griswold	Havfield	Troxel	Ringwood	Orion Var	Ringwood	Plano	FIGIO	Whalan	Plano	Huntsville	Mchenry	Kegonsa	Griswold	Elburn	Ringwood	Plano	Plano	Dresden		Soil Type	2016 Phosphorus Report - Cover Crops		в
DsB	PIA	PmA	SaB	ВbА	GrC2	DsB			RnB2	1		PnR	1.10	PnB	RoC2	KeB2	KdD2	PIB	PnB	PoA	ScB	RnC2	0102	2 SCB	Pnb		PHD	Don		╈	<^^^	-///	PnA	PnB	DsC2	PnB	GrC2	SaB	GwD2	НаА	TrΒ))		PnB		WxC2	PnB	HuB	MdD2	KeB	GwD2	EgA	RnB2	PnB	Prib	DsC2		Soil Symbol	IS Repo)	- C
4%	4%	1%	4%	%6	%6	4%	1%	%6	8%	%6	4%	7%	200	9%	%6	4%	16%	4%	4%	4%	%6	%6	%qT	1.0%	4%	70/ 2/0	4%	70/	00/	Q%	8%	1%	%P	4%	12%	%6	8%	4%	16%	%6	2%	9%	1%	15%	%F	0%	%6	16%	4%	6%	4%	16%	%6	9%	4%	470	%6		Slope	rt - Cove	· ·	
33	40	40	27	16	22	47	48	32	44	15	20	36	20 6	63	58	46	17	119	26	160	50	20	20	135	111	11 5	20	110	110	126	25	175	89	8) 4	54	90 5	3	49	19	72	145	75	77	67	140	ר 40	40	76	87	29	133	23	78	19	64	on Ar	113		Soil Test P PPM	er Crops) 	m
1		ь I	ا_	ا	ω	1	1	3	4	2	, _{>}	J.	- ,	5	2	1	2	2	2	12		~	ļ	۰ ۱	ò	7	~ ~	- -	n 4	▶ ►	J ,	J ,	л (، ر	∞ ;	4.0	_		0	w	7	4	. n	, ,	4	۰ ۱	2	8.0	2	2	10	2.0	2 1	4 u	ມ່	υ υ	2 2		Rotat. Pl		(6 6
1	1	0	2	1	ω	1	0	2	6	ω	~ ~	J ⊢	- 1	2	1	2	ω	2	ω	18	10	H-	- ۱	۰ a	o.0	° +		<u>ب</u> د		ה ת	μ	υ.	۵ u	; ۱	12	4.0		2	0	2	00	лı	ωu	υţ	11	۲ ^د	4 ¢	11.0	ъ	4	12	4.0	ως	6 2	2 1	JU	nω		Annual Pl	Withou	:	I
0.8	0.5	0.3	1.3	1.1	2.5	0.3	0.2	2.1	5.8	2.6	, I.4	1 1.0	1 0	1.3	0.7	1.6	3.1	0.9	2.5	16.6	8.9	1.1	4 C.8	0.2 2.2	0.2	0.0	ה ט. ע ט. /	0.0	0 1	л (, , , , ,	0.0	א ע ס	2.8	12.1	3.2	0.9	1.6	0.2	1.7	5.7	45	2.1	1.6	4 A 2	11.0	3.2	10.2	3.7	3.5	10.4	4.0	1.3	5.7	1.0 1.7	1 2	1.7		Part. Pl	Without Cover Crop		-
0.2	0.2	0.2	0.2	0.1	0.3	0.3	0.2	0.2	0.4	0.2	0.2	0.7	0 1	0.4	0.3	0.3	0.2	0.7	0.3	1.5	0.8	0.1	0.3	л. 1.0	2.2	ן ר טיט	n	د n	1 :	0.2	C U	л с Т	0 0	0.5	0.4	0.4	0.5	0.3	0.1	0.5	1.9	0.6	1 4	10	1 /	0.7	0.4	0.4	1.1	0.3	1.3	0.1	1.9	0.2	n ,	0.0	1.0		Soluble PI	- p		_
1	1		н. 	1	ω	1	1	2	4		• •	- ر	-	2	2	1	2	2	2	11	U U		· -	ι u	, o.o	C D L	C	+ +	<u> </u>		J r	J (л (بر	7	3.0	, I	-	0	4	6	4	υ Γ	ى د	μ 4	~ ~	2	7.0	2	2	6	2.0	2 1	ω ∧	۲ ۲	م د	2		Rotat. Pl			-
1	1	0	1	1	2	1	0	2	ω	1	~ ~	2 I	- ,	_	1	2	2	2	2	15	9	Ē	- ۱	s u	4.0	3	νF	1 t	<u>،</u> ر	лц	μr	J.	<u>م</u>	י ע	6 1.0	3.0	-	2	0	4	6	2	3 r	<i>,</i> ,	۹ 11	7	2	6.0	2	2	σ	1.0	2 4	ء در	2 5	J ⊢	4 2		Annual PI	With c		≤
0.7	0.5	0.3	1.3	1.2	2.0	0.2	0.2	1.7	2.6	1.2	7.7	1 0.9	0 0	0 %	1	1.6	2.1	0.8	1.9	13.6	7.6	0.8	0.0	2.5	3.0	2.7	0.7	0 U		N N N	2 Q	0.5	3 P.F	ۍ د د	5.6	2.4	0.7	1.6	0.2	3.6	4.0	2.0	1,0	1.7	0 8 U	10 7	1.8	5.8	1.3	1.4	3.9	0.9	0.7	1.1 2.7	11	1 2.0	1.0.8		Part. PI	With Cover Crop	, -	z
0.2	0.2	0.2	0.2	0.1	0.2	0.3	0.2	0.2	0.3	0.1	0.2	0.1	01	04	0.4	0.3	0.2	0.7	0.4	1.4	1.0	0.1	0.3	0.0	1.2	4 0.0	0.4	0.9		∩ x ∩	0.2	2 O C	0.0	0.6	0.3	0.7	0.5	0.3	0.1	0.5	1.6	0.4	1 1	0.2	1.2	0.0	0.4	0.4	0.7	0.3	0.8	0.1	1.2	0.1	0.7	0.4	1.1		Soluble PI		(0
0.1	0.0	0.0	0.0	-0.1	0.6	0.1	0.0	0.4	3.3 3	1.5	- C. A	0.1	0.2	2 0	-0.4	0.0	1.0	0.1	0.5	3.1	1.1	0.3	0.5	3.1	4.2	4 C.9	0 0.1	0_1 1	4 1.0	1 с.	0.0	9.0	0 1	0.5	6,6	0.5	0.2	0.0	0.0	-1.9	2.0	2.7	14	0.6	2.0	2 C.+	1.4	4.4	2.8	2.1	7.0	3.1	1.3	3.1	∩⊿	0.1	0.8		Annual P change per acre	Por		o
15.3	0.0	0.0	0.0	-11.0	65.5	9.9	0.0	30.0	237.6	102.3	102.2	13 /	лu	315	-24.0	0.0	55.1	5.5	24.5	142.9	50.6	13.8	12.7	13b./	a.c/T	30. <i>3</i>	-4.0	10/./	107 7	лх,	7 8	0 20	2 C	18.5	243.5	17.8	7.0	0.0	0.0	-61.0	63.6	.5.5	43.5	18.5	3b.U	0.21	42.0	131.6	82.9	61.5	201.6	87.1	36.5	11.2 86.8	2.0	8 L 7'CK	22.0		Annual P change for field	Pounds	- ;	- R
ω	л	4	<u>ر</u>	4	4	ω	л	5	4	5	n u	лс	л	л	2	5	л	5	л	4		u u	1 4	, u	, 0	n u	лц	n u		л	л	л	, ,	л с	ωι	σ.	4	л	4	л,	u,	л (л	л 4	<u>ں</u> د	- u	7 2	5	л	5	з	2	ωι	л u	л с	л и	лω	a tan farran	Tolerable Soil Loss for the field tons/acre			L I
1.2	0.4	0.4	1.3	1.4	4.0	0.7	0.3	3.9	3.5	2.6	0 F.4	1 1	1 1 2	1 6	1.1	1.5	2.6	1.4	1.3	4.7	3.8	1.8	4.0	0.0	4.4	2.1	2 1.2	4 :J	A 1	8 C	15	0.0	3.0	1.8	6.7	2.2	0.7	1.3	0.2	3.2	3.0	3.4	1 1	1.3	۵.5 م	۲.C	2.5	7.4	1.4	1.6	6.3	1.7	4.7	4.5	2.0	2.4	4.8	a read	il Calculated Soil loss for the field tons/acre	Cover Crops	Without	_
1.2	0.4	0.5	1.4	1.5	3.4	0.8	0.3	3.3	3.4	2.1	1.3	1 2	1 1	1.2	1.2	1.6	2.3	1.4	1.2	4.4	3.6	1.4	4.5	0.0	1 3.9	0.1	1 Q	4 0.0	0 10	9.6	1,5	0.8	2.8	1.7	5.8	2.1	0.8	1.4	0.1	3.7	2.8	3.0	0 0	1.5	3.2	. C	1.0	6.6	1.1	1.3	5.1	1.8	3.9	3.6	1.4	<i>د</i> ۲ د ۲.۲	2.9		Calculated Soil loss for the field tons/acre		With Cover	<
0.0	0.0	0.1	0.1	0.1	-0.6	0.1	0.0	-0.6	-0.1	-0.5	0.1	-0 -2		-0.4	0.1	0.1	-0.3	0.0	-0.1	-0.3	-0.2	-0.4	-0.4	0.0	-0.0	0 -0.0	-0.2	- <u>-</u>	4 C	-0 -2	0.0	-0 -1	-0 -2	-0.1	-0.9	-0.1	0.1	0.1	-0.1	0.5	-0.2	-0.4	-0 -2	0.0	-0 -0 -1	0.0	-1.5	-0.8	-0.3	-0.3	-1.2	0.1	-0.8	-0.9	לי ב- גרי	, c , c	-1.9		Dil Change in Soil Loss from Cover Crop re tons/acre		1	8
Dresden	Plano	Plano	St Charles	Batavia	Griswold	Dresden	Plano	Kidder	Griswold	Kidder	DIDWOID	Griswold	Pingwood	Ringwood	Rockton	Kidder	Kidder	Plano	Plano	Batavia	Dodge	Ringwood	Dresden	st Charles	Flano	DIDMBIIN	Piprwood	Diana	Distriction	Bingwood	St Charles	Warniet:	Rinon	Plano	Dresden	Ringwood	Griswold	St Charles	Griswold	Mchenry	Troxel	Ringwood	Orion Var	Griswold	Plano	GLISMOID	Whalan	Mchenry	Huntsville	Mchenry	Kegonsa	Whalan	Bover	Ringwood	Plano	Plano	Dresden		critical Soil used			×
DsB	-	╈	╈		GrC2	-	PoA	_		KdC2	ł	┢	+	+	RoC2	KeB2	KdD2		PnB		┢	t	t	┢	┢	$^{+}$	PT PT	╈	┢	╈	╈	╈	+	╉	DsC2	╈	╉	╉	GwD2	╈	+	╈	╈	╈	POR	╀	┢	MdD2			╉	WxD2	╈	RnC2	PnR	Prib	DsC2		il Soil Symbol			Z
DsB	PIA	PmA	SaB	BbC2	GrC2	DsB	PoA	KdC2	GrC2	KdC2	GIDZ	GrR3	BDC2	RnC2	RoC2	KeB2	KdD2	PIB	PnB	BbB	DnC2	RnC2	D-02	2 CB	PID	DDD DDD	Philo	Don		BnC2	5/C)		Re(?	PnR	DsC2	RnC2	GrC2	SaB	GwD2	MdC2	TrB	RnC2	0,	GWC	Pop	Dec:	WxC2	MdD2	HuB	MdD2	KeB	WxD2	BoC2	RnC2	PnR	Pnb	DsC2		51 Soil used	+		AA
69	69	69	69	69	69	69	69	69	69	69	6	64	67	64	63	69	64	69	64	64	62	69	6	62	6	64	64	C/ P	64	63	64	64	64	64	62	64	64	69	64	64	63	64	64	64	£ 94	C q	64	64	64	64	62	64	64	69	64	64 64	64		Yahara Stream Reach field is located			A AC

Table 10 continued Changes in phosphorus loss from planting cover crops

Table 10, on pages 19 – 23 provides the information from each field in the cover crop program. The summary of this data is contained in Table 11 (on the right). As shown in the summary information there were 290 fields in the cover crop program totaling 5,851.4 acres of cropland. The average reduction in the risk of phosphorus delivery was **1.48 pounds per acre**, which is a combination of both the particulate and soluble phosphorus fractions.

As shown in the summary data the minimum change in predicted phosphorus loss was (-1.9 lbs)/acre while the maximum change in predicted phosphorus loss was 10.7 lbs/acre. The next question is how much is particulate verses soluble?

Particulate Average Annual P Change/Acre	Total고 Phosphorus고 Reduction고	Average Annual Change/Acre	Total고 Phosphorus고 Reduction고
1.43	IIIIIIII ,865.2	0.05	mmmm266.0
Max	10.5	Max	1.0
Min	-1.9	Min	-0.5

Table 12 Changes in Particulate verses soluble phosphorus

As shown in the table 12, the vast majority of reduction came from the reduction in the risk of particulate phosphorus. The summary information (table 11) under column W shows the average change in predicted soil loss (-0.30 tons/acre) and the range of (-1.9) to 0.5. The **average change in soil loss, which is a negative number means that planting cover crops decreased soil loss by 0.30 tons per acre.** The summary data as shows that 30 fields had an increase in soil loss, 53 fields had no change and 207 fields had a predicted reduction in soil loss from the planting of a cover crop. As stated in most of the sections of this report, the greatest potential for reducing phosphorus loss comes on fields that undergo significant soil disturbance, have significant slopes or a combination of both of these factors.

305	304	303	302	301	300	299	298	297	296	295	2	1	
								290	Yaharal2 Stream®Reach field®s2 located		Yahara? Stream Reach field Bocated		A
						22233,851.4		Fields	Acres	2016副	Acres	2016副	B
						Tota Tota			Soil团ype	2016 Phosphorus	Soil团ype	2016 Phosphorus	C
									Soill? Symbol	s⊪epoi	Soill? Symbol	siiRepoi	D
				Minimum	Maximum		Average [®] Soil [®] est [®]		Slope	-t⊡©ove	Slope	-t⊡iCove	m
				11.0	255.0		66.99		Soil团est团和 PPM	rTrops	Soil团est团 PPM	r≣Crops	П
									Rotat.[] PI		Rotat.1 PI		н
									Annualů Pl	Without	Annualß Pl	Withoutß	_
									Part.@1	WithoutIOverIIrop	Part.®I	WithoutICoverII rop	٦
									Part.IPI SolubleIPI	q	Part.IPI SolubleIPI	q	~
									Rotat.f2 PI		Rotat.tī Pl		z
									Annual6 PI	WithToverTrop	Annual0 PI	WithToverTrop	z
									Part.IPI	erTrop	Part.IPI	erTrop	0
									Soluble12 PI12		Soluble12 Pl12		P
			-1.9	10.7		1.48	Average∄ Annual⊉? Change/Acre		Annual change acre	Pot	Annualঞ্চিশ্রি changeঞ্চিerগ্রি acre	Pot	R
			Minimum	Maximum		(1111111),130.3	Total [®] Phosphorus [®] Reduction [®]		Annual@12 changefor12 field	Pounds	Annual change field	Pounds	S
									Tolerablesoill Lossfor@hel2 field13 tons/acre		Tolerable5oill Loss≣or≣he2 field2 tons/acre		П
#ields@decr	#@Fields@wi	#Fields@ncru		Greatestilleci	Greatestilncr				Calculated[Soil@osslfor thelfield19 tons/acre	Without [®] Cover © rops	Calculated Soil@ossofor thetilield tons/acre	Without2 CoverTrops	<
#≇ields⊠decreasine®soil®oss	#了ields弧with面o配hange	#Fields@ncreasing@soil@oss		Greatestatecreasean&oilaoss	Greatestancreasean&oilaoss		Average change Soil		ි Calculatedාතoill Changeයික්රීoil වී loss fieldාtons/acre tons/acre	With Tover 17 Crops	B Calculatedizoii Change@nlboii Iossilorithelia Lossilfromil fielditions/acre Coverticropil	With Tover 12 Crops	×
207	53	30		-2.4	0.8		-0.36		Changeläntsoil Losstfromt Covert©cropt tons/acre		Change@n还oil Loss@fom@ Cover@crop@ tons/acre		×
Total	69	66	65	64	63	62	Acres@n2 Stream®Reach		Criticall5oill2 used		Criticall5oill2 used		γ
mmm8.851.4	mmm,433.8	7871271271211217.0	mmmmm20.0	11111111111,338.0	30000000000000000000000000000000000000	371777776518.5			3 Soill‰ymbol		3 Soill‰ymbol		AA
	24.50%	0.80%	0.34%	57.05%	6.74%	10.57%			រើsoilរើused		ßoillased		AB

Table 13 Soil Test Phosphorus Levels at different changes in P Loss

How much influence do soil test phosphorus levels have on predicted phosphorus losses? The first column in table 13 shows the predicted change in phosphorus loss when comparing a field with and without a cover crop. The second column is the average soil test P₂O₅, followed by the maximum and minimum soil test levels from fields with similar phosphorus reductions. The final column in the table shows the percentage of the total acres in cover crops in each of the categories.

The data in table 13 shows that 22.2% of all the cropland planted to cover crops had either a negative or no reduction (first two lines) in phosphorus loss. This means that 77.8% of the fields planted to cover crops had reductions in phosphorus loss, with reductions predicted to be

Change⊡n ⊉	Avel\$oil@TestlP	Max Soil	Mintsoiltest₽	Percentage
				of of
<10	59.9	136	16	6.8%
	F1 1	120	10	15 40/
0	51.1	120	19	15.4%
0.137.0	65.0	173	11	46.1%
1.132.0	70.7	163	13	10.9%
2.133.0	88.4	255	29	5.5%
2 1 3 3 0	50.4	1.00	11	C F0/
3.1324.0	58.4	160	11	6.5%
4.135.0	90.1	161	33	2.9%
5.136.0	84.2	108	60	1.5%
6.137.0	78.6	142	14	2.1%
7 1 3 3 0 0		151	25	0.00/
7.133.0	77.7	151	35	0.9%
8.133.0	81.0	81	81	0.3%
0.120.010	01.0		01	01070
9.13710.0	98.0	98	98	0.3%
>10	62.3	123	27	0.8%
				100.000
				100.0%

between 0.1 - > 10.0 lbs/acre. Fields with reductions between 0.1 - 1.0 had slightly higher average soil test P levels than those with negative or no reduction, and were the majority of the fields.

There were not a significant number of fields with greater that 4-pound reductions in phosphorus loss (about 8.8% of the total acres in the program) so care should be taken in evaluating the influence of soil test P because of the limited number of fields. Two of the categories (8.1 - 9 and 9.1 10) had only one field each. Comparing this data to the reductions in particulate verses soluble phosphorous, it appears that tillage and slope play larger roles in predicting phosphorus delivery.

0			
Stream Reach	Acres	Percentage of Acres	Total Phosphorus Reduction
62	618.5	10.57	1,296.5 pounds
63	394.1	6.74	471.0 pounds
64	3,338.0	57.05	4,447.4 pounds
65	20.0	0.34	0 pounds
66	47.0	0.80	18.1 pounds
69	1,433.8	24.5	897.3 pounds

Looking at the data based on phosphorus reduction for each reach of stream is in table 14 (below).

Table 14 Phosphorus reductions by stream reach

4. Headland Stacking Manure

Based on data collected at the Discovery Farms and Pioneer Farms, winter runoff events that occur as a combination of increased temperatures and rainfall, along with frozen soils and deep snow cover, produces a high potential for surface runoff from fields. Livestock producers who make manure applications to cropland during this high-risk period need to understand that spreading manure during snowmelt does have an extremely high risk of runoff. Studies from farms cooperating in the Discovery Farm Program indicate that manure applied to snow covered and/or frozen soils during conditions of snowmelt or rain on frozen soils **can contribute the majority of the annual nutrient losses. One inappropriately timed manure application can generate large losses of phosphorus to surface waters.**

Yahara Pride Farms decided to provide an incentive to farmers who sometimes have to clean out lots with solid manure during this critical runoff period. The goals of this program were to reduce the risk of manure run off by:

- Offering an incentive to farmers for stacking, reloading and spreading manure during a low risk runoff period.
- The incentive payment is offered to help offset the cost of double handling manure.

Calculating the predicted reductions in phosphorus loss from headland stacking during critical runoff periods can be accomplished using the SNAP+ program by comparing the risk of a manure application in the winter (surface applied) and in the spring (incorporated). The predicted reductions in phosphorus loss are shown in table 15.

There was one farm that cooperated in the headlandstacking program in 2016. This farm stacked about 500 tons of solid dairy manure on a site approved for stacking. If the manure had been applied to cropland during the critical runoff period, the application would have covered about 50 acres.

Totalacres		3 Fields	14.6 Dresden DsC2 9% 74 3 4 1.6 2.5	22.2 Plano PnC2 9% 22 2 3 0.2 2.3	13.6 Dodge DnC2 9% 47 6 3 0.6 2.8	Acres Soil@ype Soil@ymbol Slope@ Soil@est@@ Rotat.@PI Annual@PI Part.@PI Soluble@10	
			_			Part.Pl SolublePl	Burnahiranii
			2 2	1 0	6 1	Rotat.ᡂPI F	Survey and a second sec
	ہ A Cha		1.4 0.5	0.1 0.3	0.5 0.8	Part.IPI SolubleIPI2 ch:	CIVI18
2.13 annunatio7.3	Average2 Total2 Annual32 Phosphorus2 Change/Acre Reduction2		2.2 32.1	2.1 46.6	2.1 28.6	Annual Annua	

Table 15 Change in phosphorus loss from headland stacking solid dairy manure

As shown in table 15, stacking manure during the critical runoff period reduced the loss of phosphorus by 2.13 pounds per acre. Headland stacking showed a greater reduction in the risk of phosphorus loss than any other single practice. It is also important to note that headland stacking of manure during the critical runoff period is the only practices where soluble phosphorus losses are the dominant form of phosphorus reduction. The predicted reductions in soluble phosphorus from each of the three fields in this study were two pounds per acre.

Manure application rates were the same on each field, the only variable was whether manure was spread during the winter on frozen and/or snow covered ground or during the spring and incorporated within 72 hours. This one operation stacking just 500 tons of manure reduced the predicted risk of phosphorus loss to nearby surface water by 107.3 pounds.

Practices that reduce losses of soluble phosphorus are of particular importance because once phosphorus is in runoff water there is little that can be done to remove it prior to reaching nearby surface water. Most conservation practices are designed to capture and slow water running off of fields so that particulate soil particles fall out of the runoff and remain in the buffers settling basins and wetlands. However, soluble phosphorus is not tied to particles and therefore flows with the water. Keeping soluble phosphorus out of runoff is a critical factor in reducing the overall phosphorus loads to the Madison chain of lakes.

All of the fields impacted by this year's stacking program are in stream reach 64.

6. Combined Practices

The incredible cooperation of the local crop advisors and farmers provided YPF with an adequate data allowed us to evaluate "How does stacking different best management practices impact the potential for phosphorus loss"? This question was evaluated on 35 fields in 2016 and the data is contained in table 16 on page 28.

To determine the impact of applying more than one best management practice, we first ran the SNAP calculation with all the practices in place. Then one practice was removed from the field and the numbers were entered into the table for that practice. Then the practice that was removed was added back to the field and the second practice was removed. Those numbers were then entered into the spreadsheet for that practice. Finally both best management practices were removed from the field and the impact on the potential phosphorus loss was recorded. The data contained in table 16 are from a single year and compare fields with and without both practices. The phosphorus reductions for these fields appear in the individual practice sections of the report (LDMI, strip tillage and cover crops) so the reductions in predicted phosphorus loss for each single practice are not provided using the data in table 16.

					mm,432.0		35		153.0	121.0	117 O	110.0	99.0	90.0	57.0	55.1	55.0	39.1	38.4	31.1	30.0	28.0	28.0	27.5	23.5	20.1	16.0	14.5	14.0	14.0	10.0	9 9 9.8	9.1	8.4	8.4	2 I R	6.8	4.0	Acres		
			Ī		Total⊠ Acres		Fields		Dresden	Plano	Plano	Batavia	Dresden	Plano	Kidder	Kidder	Plano	Dresden	Dresden	Ringwood	Whalan	Plano	Plano	Dresden	Kegonsa	Plano	Elburn	Ringwood	Elburn	Plano	Plano	Plano	Dresden	Stacharles	Whalan	Griswold	StaCharles	Kidder	Soill習ype		
		Τ						1	DsB	PIA	PmΔ	BbA	DsB	PIA	Ke B2	KdD2	PIB	DsC2	DsB	KNC2	WxC2	PnB	PnB	DsC2	KeB	PoA	EOA	RnC2	EfB	PnC2	PnB	PoB	DsB	ScB	WxD2		ScB	KrE2	Soil? Symbol		20
			Minimum	Maximum		Average? Soil@restaP		;	4%	4%	4%	%6	4%	1%	4%	16%	4%	%6	1%	%6	%6	4%	4%	%6	2%	10% 4%	10%	%6	3%	%6	2%	4%	2%	4%	16%	16%	4%	28%	Slope		16卲hos
		T	13.0			66.29	Π	;	33	40	40	16	47	48	46	17	119	118	115	70	40	64	90	113	167	60 23	1 64	132	69	82	92	56 1/0	83	13	81	21	15	57	Soil@restf P@PPM		2016
	Ì	Ì	İ					7	2	,		2 22		1	ω	6	2		., ,	J U	ω	ω	ω	ω	2	v ا	۔ م اد		6	5	<u></u> ,	- - α		ω	م	4 u	س	4	Rotat.[1	Wii	Report
		t	ſ				Ħ	,		<u></u> ,	- t	<u>ب</u> د	ц	1	5	л	2	13	ω	л I Z	7	2	2	з	2	u v	L	15	4	ъ	4	12	2	ω	15 0	x u	ω	6	12 Annual Pl	:houtīītilla;	Room
		T	T				Π	!	1.1	1.1	0.4	2 7 2 7	0.8	0.4	4.4	5.2	1.2	11.1	0.4	10.1	6.8	1.7	1.8	1.9	1.5	5.1	4 0. /	14.4	2.4	3.6	2.3	2.8	0.6	2.6	12.6	8.2	2.8	4.8	f Part.PI	Without13illage/cover13rops	oinatio
									0.2	0.2	0.7	0.1	0.1	0.2	0.2	0.3	0.6	1.4	2.8	1.5	0.4	0.2	0.3	0.7	0.9	0.3	0.7	0.6	1.4	1.1	1.3	1 1 1 1	1.1	0.1	1.9	0.0	0.1	0.8	Soluble[Pl]	đrops	notip
		Ì	Ì					-	-	⊢_ ,	_ _	- - 0	0	1	2	2	2	4	.,	- 4		2	ω	2	2	5			6	4	4	л <	, 	ω	4 ا	_ _	۰ سا	ω	Rotat.lī	×	actices
-		t	ſ	Π			Π			1 0	⊃ ►	л г	0	0	2	2	2	4 1	, c	υσ	<u>ь</u> т	1	2	2	2	4 +	<u>ب</u> د	14	2	2	2 7	2 11	1	1	л ,	- r	·	ω	f Annual Pl	With Tillage/Cover Trops	
		T	T				Π	1	0.7	0.5	0 1.4	4 0.5	0.2	0.2	1.7	2.1	0.8	ωi	0.2	4 ر م	0.9	1.1	1.2	0.8	0.5	3.9 	3 C	12.9	1.6	2.1	1.6	- %	0.3	1	μ 6	0.6 0.6	1.1	2.6	Part.Pl	/CoverT	
								i	0.2	0.2	0.2	0.1	0.2	0.2	0.3	0.2	0.7	0.9	2.2	0.5	0.4	0.3	0.3	1.1	1.1	0.5	0.8	0.9	0.5	0.4	0.5	1.b	0.9	0.1	1.4		0.1	0.2	Soluble(PIP	ops	
		0.1	9.5		2.23	Average Annual Change/Acre	•	1	0.4	0.6	0.1	0.2	0.5	0.2	2.6	3.2	0.3	8.1	0.8	7.C	5.9	0.5	0.6	0.7	0.8	1.0	0.1	1.2	1.7	2.2	1.5	1.0	0.5	1.6	9.5	7.7	1.7	2.8	Annualഈ changeൂല്മെ acre	P	
		Minimum	Maximum		amman2,067.1	Phosphorus? Reduction?		-	61.2	72.6	2 JU - 2	22.0	49.5	18.0	148.2	176.3	16.5	316.7	30.7	161./	177.0	14.0	16.8	19.3	18.8	20.3	10 1	17.4	23.8	30.8	15.0	9.8	4.6	13.4	79.8	58.3	11.6	11.2	Annual@2 changetfor2 field	Pounds	
			 		1	2		-													 							 					 				I	I I			
								(ω	ωł	⊳ u	n 4	ω	5	л	л	5	ωι	лс	n u	2	л	л	ω	ω.	4 U	n UT	ι σ	5	σ	л (4 л	. ω	5		4 4	. <i>п</i>	л	ែolerableទែoil Lossថាទាធិកេធិ fieldខា tons/acre		
#⊪ields∎eci	#Tields		Greatestatec	Greatestancr					1.2	0.4	1.3	1.4	0.7	0.3	1.5	6	1.4	- 6.2	1 1.0	3.4	л	2.7	2.6	8.1	2.1	1.0 5.2	0.6	6.3	3.2	3.4	2.1	3.3	2.2	2.8	л , ,	4.5	2.8	4.7	Calculated? Soil@osstor? thettield? tons/acre	Without [®] practices	
#Fields@ecreasingBoil@oss	#TieldsTwithThoThange	##ioldc3pcroscing&oilgbee	reaseInBoilloss	GreatestancreaseanBoilaoss		Averageo change@nSoili Loss	•		1.2	0.4	Ол 1.4	1.5	0.8	0.3	1.6	2.3	1.4	ω 	0 8 U	3.0	2	1.4	2.4	2.9	1.2	1.0 4.8	0.6	5.7	2.9	2.8	1.8	3.0	1.8	2.3	2 ^{0:0}	و.0 م	2.3	4.0	Calculated Solutions field field	Withpractices	
24	σ,	'n	-5.2	Π		-0.88		a i a	0.0	0.0	0 1	0.1	0.1	0.0	0.1	-3.7	0.0	-2.9	-0 -2	0.4	-3.0	-1.3	-0.2	-5.2	-0.9	-0.4	0.0	-0.6	-0.3	-0.6	-0.3	-0.4	-0.4	-0.5	ц	-2 -3 -0 -2 -0	-0.5	-0.7	Changestint? Soil@oss? from@oth? Tillage@and? Cover@rop? tons/acre		
Total	69	65	64	63	62	Acressing Stream [®] Reach [®]			Dresden	Plano	Plano	Batavia	Dresden	Plano	Kidder	Kidder	Plano	Dresden	Dresden	Kingwood	Whalan	Plano	Plano	Dresden	Kegonsa	Plano	Elburn	Plano	Elburn	Plano	Plano	Plano	Dresden	StTCharles	Whalan	Griswold	Stitcharles	Kidder	CriticallSoil		
1432.0	966.0	0.0	466.0	0.0	0.0				DsB	PIA	PmΔ	BbA	DsB	PoA	KeB2	KdD2	PIB	DsC2	DsB	KnC2	WxC2	PnB	PnB	DsC2	KeB	PoB	EOA	PnC2	EfB	PnC2	PnB	PoB	DsB	ScB	WxD2	GWD2	ScB	KrE2	SoillSymbol		
	67.46%		32.54%						DsB	PIA	PmA	BbC2	DsB	PoA	KeB2	KdD 2	PIB	DsC2	DsB	KnC2	WxC2	PnB	PnB	DsC2	KeB2	PoB	EOA	PnC2	EfA	PnC2	PnB	Pog	DsB	ScB	WxD2	GWD2	ScB	KrE2	Soil@ised		
								;	69	69	60	69	69	69	69	64	69	64	64	60	64	64	64	64	64	64	69	64	64	64	64	64	64	64	64	64	64	64	Yahara12 Stream12 Reach13field13s located		

Table 16 Changes in Phosphorus loss from combining practices

However, for the purposes of the discussion the three cost shared practices (cover crops, low disturbance manure injection and strip tillage) were evaluated on fields that had multiple practices applied. The 2016 data set did not contain any fields that had all three practices and in all cases one of the practices was cover crops in combination of either LDMI or strip tillage.

The 35 fields totaled 1,432 tillable acres and contained a range in estimated phosphorus reduction for these fields of 0.1 to 9.5 lbs per acres (all positive). Of the 35 fields none showed a negative potential phosphorus reduction. <u>The average phosphorus reduction for these fields was 2.23 lbs per</u> <u>acre</u>. If we take the averages for the three practices included in the combined data it appears that conducting two practices on a field produces less phosphorus reduction than the combination of each practice:

- Strip Tillage Average P reduction = 0.89 pounds per acre
- LDMI Average P reduction = 0.88 pounds per acre

• Cover Cr	ops
------------	-----

Average P reduction = 1.48 pounds per acre

Farm	Average2 impactむf2 cover&rop2 (Ibs/acre)	Average impact tillage (lbs/acre)	Predicted impact both practices (lbs/acre)	Difference [®] between [®] CC+tillage [®] and [®] implementing [®] both [®] practices [®] ^{®®} Ibs/acre)	Acres with both practices	Pathange2 from2 adopting22 practices277 (pounds2fora theafarm)	Stream Reach	Additional Phosphorus Reduction Stream Reach
1	0.02	0.54	1.70	1.14	966.0	1101.2	69	1101.2
2	0.00	1.80	7.55	5.75	16.0	92.0	64	-16.7
3	0.25	0.30	0.55	0.00	56.0	0.0	64	
4	0.80	0.87	1.07	-0.60	44.6	-26.8	64	
5	2.91	2.20	2.31	-2.80	103.1	-288.7	64	
6	1.15	0.20	1.65	0.30	15.2	4.6	64	
7	1.63	1.19	3.69	0.88	231.1	202.2	64	
					1432.0	1084.6		

Table 17 Phosphorus reductions for the 7 farms with two practices on a field

However, using the averages for all the farms participating in the cover crop, strip tillage and the low disturbance manure injection programs would lead to an incorrect conclusion. The data in table 17 was derived from each of the 35 fields participating in the combination of practice program. The data shows the averages by farms instead of each field. Six of the seven farms had a reduction in phosphorus loss through the adoption of cover crops, one farm saw no benefits to cover crops on these fields. All of the farms had a reduction in phosphorus loss through the adoption 0.2 to 2.20 pounds per acre. All of the farms also had a reduction in phosphorus loss through the adoption of two practices with the range being from 0.55 to 7.55 pounds per acre. The center column shows the difference between adopting two practices and the sum of the cover crop and reduced tillage programs. For the 7 farms in this program:

- ✓ Two had a lower predicted phosphorus loss than the sum of cover crops and tillage,
- ✓ One had no difference between the combination of practices and the sum of the 2 practices,
- ✓ Four had higher predicted phosphorus loss than the sum of cover crops and tillage.

It is important to note here that combining practices had a higher average (2.23 lbs per acre) than any one of the individual practices (strip tillage = 0.89; LDMI = 0.91; and cover crops = 1.48 lbs per acre). This information is exactly what the YPF's board had expected but had never previously calculated. However, after running many of these calculations it cannot be said that combining practices will in every case increase the potential for phosphorus reduction. Reductions are strongly influenced by tillage, slope and the practices being replaced.

There are some general conclusions that can be derived from this data set:

- YPF needs to continue promoting the use of more than one conservation practice on a field in order to have adequate sample numbers to clearly identify the impact of two or more practices,
- The range in the difference between the combination of practices and the sum of two practices is wide (-2.8) to 5.75 and more work needs to be done to determine on what types of farms and fields the implementation of two practices is most beneficial,
- The combination of practices provided the greatest reduction in phosphorus loss at 2.23 pounds per acre,
- > The combination of practices reduced phosphorus losses in 2016 by 1,085 pounds over the sum of the individual practices.

The seven farms participating in the combination of practices received a bonus payment. This year's bonus was \$15 per acre for up to 103 acres of cropland with a total bonus payment of \$5,100.

The cropland enrolled in this program reduced phosphorus loss by 1,085 pounds over what was provided by the individual practices. Therefore the cost per pound of phosphorus was:

\$5,100 in bonus payments / 1,085 pounds of phosphorus reduced =

\$ 4.70 per pound of phosphorus

7. Multiple Years of Best Management Practices

A. Multiple Years of one practice:

The final question that YPF decided to evaluate was "How important are continuous multiple years of practice implementation"? In other words, instead of thinking about cost sharing a practice for one or two years, what happens if the practice becomes an integral part of the farming system? That's what happened on many farms that experimented with no-till. The first few years were often challenging, but the farmers determined that the benefits to this farming system out-weighed the negatives and they worked to perfect the system on their farms.

Table 19 (pages 32 – 35) contains the data from the 22 fields that have cooperated in the YPF cost share program and have implemented the same practice on a field for at least 3 years in a row. The fields in this analysis were planted to a variety of crops but many of the fields in this data set were planted to continuous corn silage. The use of a cover crop lowered the soil losses and the Phosphorus Index to an acceptable level for many of these fields and to continue to harvest corn silage some conservation practices need to be adopted.

There are probably several ways to calculate the impact of multiple year implementation of a practice but for this project the reductions in the potential loss of phosphorus were only taken on the 2016 crop year. When looking at the data in table 19, the initial year is the field without the practice being implemented. The second line (2016) shows the implementation of the practice and the changes to annual soil loss, rotational Phosphorus Index, annual Phosphorus Index, annual particulate phosphorus loss and annual soluble phosphorus loss. The lines following the 2016-year show the impact of adopting the practices in prior year on the field in 2016. There were reductions in phosphorus loss in each of the preceding years (2012 - 2014), but for the purpose of this analysis these reductions are not credited.

Draduction	Draduction	Draduction	Draduction	Draduction	Draduction	Average D
P reduction	P reduction	P reduction	P reduction	P reduction	P reduction	Average P
per acre	for field	per acre	for field	per acre	for field	reduction /
						acre
0.2	1.5	0.9	26.4	0.2	2.0	1.03
0.0	0.0	2.7	37.8	3.6	20.5	
0.9	4.4	1.2	16.8	0.5	10.0	Total P
4.0	30.8	0.5	4.9	0.2	2.1	reduction in
						pounds
0.4	12.4	1.1	6.5	1.0	7.4	296.9
0.2	6.7	0.2	1.6	2.5	40.8	
-0.1	-5.5	0.5	15.9		90.5 lbs ir	n S.R 63
1.8	47.7	0.2	6.2		206.4 lbs i	n S.R 64

Table 18 contains a summary of the average phosphorus reduction on these 22 fields, the total reduction per field and the total reduction for the multiple year single practice program.

Table 18 Average phosphorus reductions per acre and total phosphorus reduction in field for multiple years of one practice

					31.1						7.7							4.9					26.7					7.5	Field Size	
					1%						%6							4%					1%					1%	Slope	
					ഗ						3							4					5					2	Tolerable Soil Loss	
	2013	2014	2015	2016	None			2014	2015	2016	None		2012	2013	2014	2015	2016	None		2014	2015	2016	None		2014	2015	2016	None	Year of Cover Crop	Multiple
	0.9	1.0	1.2	1.3	1.5			3.2	4.2	5.5	6.5		3.5	4.2	4.8	4.9	5.5	6.1		0.3	0.3	0.3	0.2		0.1	0.1	0.1	0.1	Actual Soil Loss	iple Years
	З	З	3	3	4			4	6	8	9		4	5	5	6	6	7		1	1	1	1		-	-	-	1	Rotational Pl	
	2	2	2	2	4			4	4	4	10		З	3	3	3	ω	7		1	1	1	1		-	-	-	2	Annual PI	of Implementing
	0.9	0.9	0.9	1.0	2.3			3.2	3.2	3.6	9.6		2.8	2.8	2.8	2.8	3.0	6.4		0.1	0.1	0.1	0.1		0.2	0.3	0.3	0.3	Particulate Phosphorus	മ
	1.2	1.2	1.2	1.3	1.6			0.5	0.5	0.5	0.7		0.4	0.4	0.4	0.4	0.5	0.6		1.3	1.3	1.3	1.3		1.2	1.2	1.2	1.7	Soluble Phosphorus	Practice
1.8	0.0	0.0	0.2	1.6			6.6	0.0	0.4	6.2		3.8	0.0	0.0	0.0	0.3	3.5		0.0	0.0	0.0	0.0		0.6	0.1	0.0	0.5		Impact of CC over preceeding Year	
1.4							2.6					2.9							0.0					0.4					Phosphorus reduction in 2016 practice section	
	field	12.4		per acre	0.4		field	30.8		per acre	4.0			field	4.4		per acre	0.9	field	0.0		per acre	0.0	field	1.5		per acre	0.2	Change Due to Multiple Years	

Table 19 Phosphorus reductions for multiple years of implementing one practice

				30.8					31.8					8						5.9						9.9						14.0	
				4%					2%					1%						2%						4%						2.5%	
				4					5					5						4						ъ						5	
	2014	2015	2016	None		2014	2015	2016	None		2014	2015	2016	None		2013	2014	2015	2016	None		2013	2014	2015	2016	None		2013	2014	2015	2016	None	
	3.7	3.7	3.8	4		3.1	3.3	3.4	3.5		0.8	1	1.1	1.2		2.2	2.6	2.9	3.2	3.6		3.2	3.7	4.3	4.9	5.5		2.5	3.0	3.3	3.6	4.1	
	7	7	7	8		7	7	8	8		თ	6	6	6		6	7	7	8	6		4	ე	6	6	7		5	6	6	7	7	
	10	10	10	12		7	7	7	6		5	5	5	8		4	4	4	4	6		2	2	ω	З	7		2	2	2	2	5	
	8.7	8.6	8.8	10.6		5.5	5.5	5.6	6.8		1.8	1.8	2.2	3.5		2.6	2.7	2.7	3.0	7.5		2.1	2.1	2.2	2.5	6.1		1.5	1.5	1.5	1.7	4.5	
	1.3	1.3	1.4	1.6		1.6	1.6	1.6	1.8		З	3	3.1	4		1.1	1.1	1.1	1.2	1.9		0.3	0.3	0.3	0.4	0.5		0.5	0.5	0.5	0.6	0.8	
2.2	-0.1	0.3	2.0		1.5	0.0	0.1	1.4		2.7	0.0	0.5	2.2		5.7	0.1	0.0	0.4	5.2		4.2	0.0	0.1	0.4	3.7		 3.3	0.0	0.0	0.3	3.0		
2.0					 1					2.5					 4.6						3.7						 2.1						
per field	6.2		per acre	0.2	per field	15.9		per acre	0.5	per field	1.6		per acre	0.2		field	6.5		per acre	1.1		field	4.9		per acre	0.5		field	16.8		per acre	1.2	

Table 19 continued Phosphorus reductions for multiple years of implementing one practice

					14.0						29.3							26.5					55.0					33.7	Field Size	
					9%						6%							4%					4%					2.50%	Slope	
					ъ						5							з					ŋ					ŋ	Tolerable Soil Loss	
	2013	2014	2015	2016	None		2013	2014	2015	2016	None			2013	2014	2015	2016	None		2014	2015	2016	None		2014	2015	2016	None	Year of Cover Crop	
	3.5	3.7	4.5	5.4	6.5		1.6	1.6	2.0	2.5	3.2			4.9	5.2	5.5	5.7	6.2		1.0	1.1	1.2	1.3		0.9	1.0	1.1	1.2	Actual Soil Loss	
	5	5	6	7	8		2	3	З	4	5			8	8	6	9	11		-	-	1	<u> </u>		2	2	2	2	Rotational Pl	
	з	3	з	4	12		2	2	2	2	5			9	9	6	10	11		1	1	1	<u> </u>		2	2	2	ω	Annual PI	
	2.9	2.9	2.9	3.2	10.6		1.4	1.4	1.4	1.5	4.4			7.8	7.8	7.8	8.2	9.7		0.7	0.7	0.7	0.8		0.6	0.7	0.7	0.9	Particulate Phosphorus	
	0.6	0.6	0.6	0.6	0.9		0.3	0.3	0.3	0.3	0.3			0.9	0.9	6.0	1.3	1.0		0.1	0.1	0.1	0.1		1.6	1.6	1.7	2.1	Soluble Phosphorus	
8.0	0.0	0.0	0.3	7.7		3.0	0.0	0.0	0.1	2.9			2.0	0.0	0.0	8.0	1.2		0.1	0.0	0.0	0.1		8.0	0.1	0.1	0.6		Impact of CC over preceeding Year	
5.3						2.1							0.2						0.2					0.6					Phosphorus reduction in 2016 practice section	
	field	37.8		per acre	2.7		field	26.37		per acre	0.9			field	47.7		per acre	1.8	field	-5.5		per acre	-0.1	field	6.7		per acre	0.2	Change Due to Multiple Years	

Table 19 continued Phosphorus reductions for multiple years of implementing one practice

				16.3					7.4					10.4						19.9						5.7						10
				9%					%6					1%						2%						9%						2%
				5					ъ					4						4						5						თ
	2014	2015	2016	None		2014	2015	2016	None		2014	2015	2016	None			2014	2015	2016	None			2014	2015	2016	None		2013	2014	2015	2016	None
	6.2	6.2	6.3	6.7		6.1	6.2	6.4	6.7		1.5	1.5	1.6	1.7			2.2	2.5	2.9	3.3			3.4	4.4	5.5	7.0		1.9	2.2	2.5	2.8	3.1
	10	10	11	11		10	11	11	11		4	4	4	4			6	7	8	9			5	6	8	10		ъ	5	6	6	7
	17	17	17	20		14	14	14	17		ŋ	Б	6	6			4	4	თ	10			ъ	5	6	16		2	2	2	2	ഗ
	15.2	15.2	15.4	18.6		12.7	12.8	13.1	15.5		3.4	3.4	3.5	4.2			2.8	2.8	3.1	7.9			4.7	4.8	5.2	14.9		1.6	1.6	1.7	1.8	4.3
	1.4	1.4	1.4	1.6		6.0	1	1	1.1		2.0	2.0	2.0	2.3			1.5	1.5	1.6	2.3			0.6	0.6	0.6	0.9		0.6	0.6	0.7	0.7	1.0
3.6	0.0	0.2	3.4		3.0	0.2	0.3	2.5		1.1	0.0	0.1	1.0			5.9	0.0	0.4	5.5			10.5	0.1	0.4	10.0		3.1	0.0	0.2	0.1	2.8	
1.1					2.0					 0.9						5.4						6.9					2.9					
per field	40.8		per acre	2.5	per field	7.4		per acre	1.0	per field	2.1		per acre	0.2		per field	10.0		per acre	0.5		per field	20.5		per acre	3.6		field	2		per acre	0.2

Table 19 continued Phosphorus reductions for multiple years of implementing one practice

One point that should be made from the data in table 19 is that while the reductions in phosphorus loss on a field for the most recent year of the practice (2016) generally peak out after three years (meaning that the influence of a practice appears to carry forward about 3 years), the impact on the annual losses each year shows up in the change in actual soil loss and the rotational Phosphorus Index numbers. As this data clear shows the more years of practice adoption the lower the actual soil loss and rotational Phosphorus Index numbers.

The average predicted reduction in phosphorus loss based on this data is continuing to increase, however this is influenced by the slope and tillage system used on the farm. Farmers who have a field or two that they want to harvest as continuous corn silage may find that inserting a cover crop in between the corn crops and using a no-till corn planting system may help the field achieve acceptable levels or soil and phosphorus loss.

One challenge in this watershed is that many of the fields have hay in the rotation, which reduces the number of years for crediting the cover crop. A suggestion for YPF board to consider is to look at providing an incentive to farmers to maintain a living crop on the field throughout the rotation. Fields planted to corn, soybeans and small grain crops would require a cover crop after harvest to be consider in compliance with the program, while fields during the hay rotation are considered in compliance.

B. Multiple years of two practices

The data in tables 20 and 21 comes from those farms and fields that implemented two or more practices continuously on the same fields for 3 or more years. This data comes from a limited number of farms and represents only 12 fields so crop rotation and slope have a major impact on several of these fields. However, this data has a similar finding to the combined practices data.

One caution is that the 2016 cost share program data has been evaluated over a long period of time and in a number of different ways. This probably had an impact on the annual phosphorus reduction numbers from cover crops and strip tillage that were subtracted from the multiple years and multiple practices reduction figure. The author accepts all criticisms and can only say that the analysis and the ways to analyze the data underwent a significant number of revisions in an attempt to accurately represent the data. With multiple years and practices the impact of a practice on the year following implementation is large, however YPF is evaluating only the cost share year. Yahara Pride Farms needs a few more years of data in the multiple years and practices to be able to clearly draw conclusions.

			90.0					57.0					55.0					34.0					16.0						23.5	Field Size		
			1%					4%					4%					4%					2%						2%	Slope		
			сл					5					5					ഗ					თ						З	Tolerable Soil Loss		
2014	2015	2016	None		2014	2015	2016	None		2014	2015	2016	None		2014	2015	2016	None		2014	2015	2016	None		2013	2014	2015	2016	None	Year of Cover Crop	Multip	
0.3	0.4	0.5	0.5		1.9	2.9	3.0	3.8		2.0	2.1	2.8	2.9		1.6	2.5	2.6	3.4		0.8	0.9	1.1	1.2		2.2	2.6	3.2	3.6	3.8	Actual Soil Loss	Multiple Years	
		·	1		N	2	ω	З		2	3	3	З		2	2	2	2		2	2	2	2		2	2	2	З	ы	Rotational Pl		
<u> </u>		· _			<u>د</u>		-	2		4	4	4	4		1	1	-	ω		2	2	2	ω		2	2	2	2	з	Annual Pl	of implementing	
0.8	0.8	0.9	1.0		1.2	1.2	1.2	1.4		3.5	3.5	3.6	3.9		1.1	1.1	1.2	2.5		1.8	1.8	1.9	2.0		1.0	1.0	1.0	1.2	1.6	Particulate Phosphorus	ng two p	
0.1	0.2	0.2	0.2		0.2	0.2	0.2	0.2		0.4	0.4	0.5	0.5		0.2	0.2	0.2	0.2		0.5	0.5	0.5	0.6		0.8	0.8	0.8	0.9	1.0	Soluble Phosphorus	two practices	1
0.1 0.3	0.1	0.1		0.2	0.0	0.0	0.2		0.5	0.0	0.2	0.3		1.4	0.0	0.1	1.3		0.3	0.0	0.1	0.2		0.8	0.0	0.0	0.3	0.5		Impact of CC over preceeding Year		
0.0				0.0	0				0.1					0.8					0.0					0.9						Phosphorus reduction in 2016 practice section		1
27.0 per field		per acre	0.3	Diall	-34.2		per acre	-0.6	per field	22.0		per acre	0.4	per field	20.4		per acre	0.6	per field	4.8		per acre	0.3		field	-2.4		per acre	-0.1	Change Due to Multiple Years		

Table 20 Phosphorus reductions from multiple years and practices

153	121	117	114	110	Field Size	
4%	1%	1%	4%	%6	Slope 4%	
ω	υ	4	თ	4	Tolerable Soil Loss 3	
None 2016 2015 2014	None 2016 2015 2014	None 2016 2014 2014	None 2016 2015 2014	2015 2014 2014 2016 2015 2014	Year of Cover Crop None 2016	
2.4 2.3 1.7 1.7	0.8 0.6 0.5	0.5 0.4	3.4 2.7 1.7	1.0 0.9 0.9 1.7 1.7 1.7	Soil	
			1 2 2 3		Rotational	
ယ ယ ယ					Annual PI	
3.1 2.9 2.8 2.8	0.4 0.4 0.4 0.4	1 0.4 0.4 0.4	1.1 1 1	0.3 0.3 2.0 1.4 1.2 1.0	ate	
0.1 0.1	0.2 0.1 0.1	0.2 0.2	0.1 0.1 0.1	0.2 0.1 0.1	Soluble Phosphorus 0.2	
0.2 0.2	0.1 0.0 0.1	0.0	0.1 0.0 0.1	0.1 0.2 0.2		
0.1	0	0	0.8	-0.1	Phosphorus reduction in 2016 practice section	
0.2 per acre 30.6 per field	0.1 per acre 12.1 per field	0.6 per acre 70.2 per field	-0.7 per acre -79.8 per field	9.9 per field 1.0 per acre 110.0 per field	Change Due to Multiple Years 0.1 per acre	

Table 20 continued Phosphorus reductions from multiple years and practices

Table 21 is a summary of the impacts of multiple years and practices on the field in 2016. This table contains that difference in reduction estimates from the annual cover crops and tillage changes and the additive impacts of multiple years.

P reduction	P reduction	P reduction	P reduction	Average P reduction / acre
in	for field	in	for field	
(lbs./ acre)	(pounds)	(lbs./acre)	(pounds)	
(-0.1)	(-2.4)	0.1	9.9	0.18
0.3	4.8	1.0	110	
0.6	20.4	(-0.7)	(-79.8)	Total P reduction in pounds
0.4	22.0	0.6	70.2	
(-0.6)	(-34.2)	0.1	12.1	190.6
0.3	27.0	0.2	30.6	
				-2.4 lbs in S.R 64
				193.0 lbs in S.R 69

Table 21 Average phosphorus reductions per acre and total phosphorus reduction in field for multiple years and practices

Conclusion:

The 2016 Yahara Pride Cost Share Program has engaged a large number of farmers in one or more of the five cost share programs. This report provides information on the predicted reductions in phosphorus loss by farmers adopting one or more of these practices. The report provides both a total for the entire watershed and the reductions for each of the six stream reaches that Yahara Pride Farms is working with farmers on adoption of conservation systems.

The analysis of phosphorus reduction for the multiple year data probably under estimates the impact of the conservation systems. It focuses only on the last year of the rotation and doesn't take into account other changes in the field. Future analysis will attempt to do a better job of working to understand the impacts of multiple year and multiple practices on a field.

The headland-stacking program is the only program that has a dramatic potential reduction in soluble phosphorus loss. Consider that on a total of 50.4 acres of cropland, there was a 100.8 pound reduction in soluble phosphorus loss, while on 5,851 acres planted to cover crops we saw a 266 pound reduction in soluble phosphorus loss.

Finally, the estimated cost per pound of phosphorus reduced provided in this report reflect only the cost associated with the cost share. These numbers do not reflect the cost that farmers bare in adopting these conservation systems. The cost of seed, planting, killing and impact of the cover crop on yield have not been examined. The cost of handling manure twice and hauling to an approved stacking site and then to the field, also need to be considered. A report evaluating the cost to farmers for adoption should be done to accurately reflect the total cost of these programs. Protecting water quality is important to everyone, and everyone needs to be part of the solution.